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Abstract 

In this paper, we examine the presence of limit cycles in a modified version of the Sraffian 

supermultiplier model (SSM), with a non-linear specification for the investment reaction 

function. We use the sensitivity of the investment share to the discrepancies between 

actual and normal utilization as the bifurcation parameter and identify the conditions 

necessary for the emergence of cycles. To accomplish this, we deliver a formal analysis 

of the dynamic stability of the SSM equilibrium path and present the conditions required 

for a Hopf bifurcation to occur. Besides, we show that the version with a non-linear 

investment reaction function display dynamics similar to the baseline SSM [see Araujo 

and Moreira (2023)]. 
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1. Introduction 

Since Goodwin’s (1967) seminal contribution, burgeoning literature highlighting the 

cyclical patterns as a prominent stylized fact in advanced capitalist economies arose [See 

e.g., Skott (1989) and Setterfield (2023)]. Self-sustained oscillations stemming from a 

system of non-linear differential equations are meaningful in economic terms insofar as 

they can replicate business cycles even in the absence of an external driving force. Such 

oscillations allow us to consider growth and fluctuations intertwined phenomena as in the 

profit squeeze mechanism, with the relevant focus placed on the intrinsic interactions 

among the relevant economic variables. 

With the advent of techniques to detect cycles in non-linear systems, the study of 

oscillatory behaviour now extends beyond the elegant adaptation of the Lotka-Volterra 

system by Goodwin. For instance, Samuelson (1988) employed the Poincaré-Bendixson 

theorem to demonstrate the existence of periodic orbits in his two-dimensional multiplier-

accelerator model. Skott (1989) also used this tool to prove the existence of a limit cycle 

in the neo-Harrodian model. Although the Poincaré-Bendixson theorem1 provides a 

complete characterization of periodic orbits in two-dimensional systems (Wiggins, 2003), 

it has recently been supplanted by the Hopf theorem (Guckenheimer and Homes, 1983), 

which applies to higher dimensions as well (Araujo and Moreira, 2021; Sasaki, 2013).  

Hopf bifurcation occurs when a dynamical system changes its stability as a 

bifurcation parameter is varied through a critical value, leading to the emergence of a 

periodic orbit, whose existence depends on the non-linearities and the values of the 

system’s parameters. Accordingly, a possible kind of Hopf bifurcation occurs when a 

stable fixed point in the system becomes unstable, and a stable limit cycle emerges in its 

place, meaning that it occurs in the vicinity of an equilibrium point of a system. This 

means that any economic model with damped oscillations converging to a steady-state 

path can give rise to permanent oscillations. While any of the model’s parameters can 

theoretically be a candidate, it is important to choose one with empirical relevance. 

 Once the parameter is selected, we can assert that in the presence of a Hopf 

bifurcation for some interval of parameter values close to the bifurcation, closed orbits of 

 
1 The theorem states that if a non-linear dynamical system's trajectory is confined to a bounded region of 

the phase space and does not converge to a fixed point or a periodic orbit, then there must be at least one 

limit cycle in the phase space. 
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the dynamical system exist, with the oscillations being an intrinsic characteristic of the 

dynamic system. Indeed, if the conditions for a Hopf bifurcation are met, the probability 

of a stable equilibrium point being turned into a limit cycle can be high. However, the 

emergence of such oscillations depends heavily on initial conditions and the correct range 

for variation of the Hopf parameter2. Therefore, local analysis, along with a Hopf 

bifurcation criterium, serves as useful information about the economy’s potential for 

permanent oscillatory behaviour. 

From this perspective, in the present note, we study the existence of limit cycles 

in the Sraffian Supermultiplier Model – SSM hereafter – developed initially by Serrano3 

(1995) and Bortis (1997). The SSM regained prominence after Kaleckain authors such as 

Lavoie (2015) and Allain (2014) borrowed the concept of autonomous consumption to 

deal with Harrodian instability, ensuring the convergence of the rate of capacity 

utilization to its normal level in the long run. Those issues related to Kakeckian 

investment functions were raised by Skott (2010, 2012), who also has shown that the 

equilibrium solution for the degree of capacity utilization with conventional Kaleckian 

functions overreacts to changes in the propensity to save out of profits. This would be a 

square consequence of the specification of investment function in the Neo-Kaleckian 

growth models in which investment response to changes in the degree of capacity 

utilization is low and constant over time. 

Notwithstanding the SSM’s role in supporting the Kaleckian models to deal with 

some of their criticisms, it did not prevent it from being subjected to its own stress test. 

Authors such as Skott (2017) and Nikiforos (2018) have raised concerns about the 

endogeneity of capacity utilization, stock and flow consistency, and the autonomous 

nature of aggregate demand components in the long run. While proponents of the SSM 

 
2 While the existence of limit cycles depends on the system's equations and parameters, the initial conditions 

can also play a role in determining whether or not it occurs. For example, if the initial conditions are chosen 

to be near a stable fixed point of the system, the trajectory may stay close to that point and not exhibit a 

limit cycle. On the other hand, if the initial conditions are chosen to be sufficiently far from any stable fixed 

point, the trajectory may exhibit a limit cycle. 

3 The roots of this approach can be found in Hicks (1950) and were unfolded by Serrano (1995) considering 

that expected autonomous demand is driven by the marginal propensity to consume and the accelerator 

raised by the investment and the autonomous consumption.  
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have worked to address these issues (Freitas and Christianes, 2020; Serrano et al., 2022; 

Summa et al., 2023), which now is an integral part of an ongoing research project, 

Nikiforos et al. (2023) have recently argued that the baseline SSM cannot reproduce the 

business cycles that characterize capitalist economies in the long run, although 

recognizing the possibility of a limit cycle in the SSM with a modified investment 

reaction function4.  

On the empirical front, Summa et al. (2023) have challenged Nikiforos et al.’s 

view that investment leads the cycle, pointing out a misspecification of the investment 

share variable. Serrano et al. (2023, p. 20) also support the view that “(...) the model can 

be applied, and its performance can be evaluated not only in terms of how it explains very 

long-run trends but also in what regards cyclical fluctuations as well.” While admitting 

the possibility of cycles in the SSM, its proponents argue that they are not endogenously 

generated by the interaction of its variables, as we consider here. Instead, in their view, 

cycles are the outcome of oscillations of the non-capacity creating autonomous 

investment.  

In this vein, the present paper is to the best of our knowledge the first attempt to 

prove the existence of endogenous cycles in a modified version, with a non-linear 

specification for the investment reaction function. On the one hand, we confirm the 

insight by Nikiforos et al. (2023) that using a non-linear investment reaction function in 

terms of utilization, we can obtain a limit cycle. But, on the other hand, we show that the 

modified model can display dynamics like the baseline SSM. In addition to this section, 

the next one presents the baseline model and a modified version with a non-linear 

investment reactions function, focusing on the dynamic stability of the SSM equilibrium. 

Section 3 presents the conditions for the model to undergo a Hopf bifurcation that gives 

rise to permanent periodic fluctuations between its endogenous variables. Section 4 

concludes. 

 

 

 
4 Nikiforos et al. (2023, p. 4) raised the possibility that the SSM can give rise to a limit cycle if the 

adjustment of the investment share is not linear but S-shaped in the utilization rate. Such a specification 

seems reasonable from an empirical viewpoint, and here we take this possibility into account.  
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2. Asymptotic Stability in the Sraffian Supermultiplier 

In what follows we present a detailed presentation of the baseline SSM following 

Serrano and Freitas (2017) to focus on its dynamic properties. We also change the model, 

by introducing a non-linearity in the investment reaction function to compare the 

dynamics with that of the baseline model. We deal initially with a closed economy 

without government. The economy uses capital, 𝐾𝐾, and labour, 𝐿𝐿, to produce output, 𝑌𝑌, 

by using a fixed coefficient technology: 

𝑌𝑌 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑢𝑢𝑢𝑢
𝑣𝑣

, 𝐿𝐿
𝑙𝑙
�                                           (1) 

where 𝑢𝑢 is the rate of capacity utilization, 𝑣𝑣 is the capital-full capacity output ratio and 𝑙𝑙 

is the labour-output ratio. Disregarding depreciation5, we can write the growth rate of the 

stock of capital as:  

𝐾𝐾� = �𝐼𝐼/𝑌𝑌
𝑣𝑣
� 𝑢𝑢                                          (2) 

It is assumed that the level of aggregate real investment is a fraction ℎ of the income, 

namely: 

 𝐼𝐼 = ℎ𝑌𝑌                                                          (3) 

where ℎ is the marginal propensity to invest. By substituting (3) into (2) we obtain: 

𝐾𝐾� = �ℎ
𝑣𝑣
� 𝑢𝑢                                              (4) 

In the baseline SSM, the marginal propensity to invest changes endogenously and 

linearly in response to deviations in the actual degree of capacity utilization from its 

normal level, denoted by 𝜇𝜇, according to a flexible accelerator investment function, where 

the marginal propensity to invest changes as follows: 

ℎ̇ = ℎ𝛾𝛾(𝑢𝑢 − 𝜇𝜇)                                              (5) 

where 𝛾𝛾 is the sensitivity of the investment share to the discrepancies between actual and 

normal utilization, which is a parameter that measures the reaction of the growth rate of 

the marginal propensity to invest to the deviation of the actual degree of capacity 

 
5 Just to make the algebraic manipulations easier. 
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utilization from its normal or planned level. In what follows, we will also consider a non-

linear specification for this equation, which reads as6: 

ℎ̇ = 𝑓𝑓(𝑢𝑢, ℎ) = ℎ � 𝛾𝛾
1+𝜃𝜃|𝑢𝑢−𝜇𝜇|

� (𝑢𝑢 − 𝜇𝜇)                                         (5)’  

This non-linear specification reduces the speed of adjustment of ℎ towards its 

steady-state value. If in the original model, this speed is given by 𝛾𝛾, now in (5)’, 𝛾𝛾 is 

divided by 1 + 𝜃𝜃|𝑢𝑢 − 𝜇𝜇|, meaning that changes occur according to the distance of 𝑢𝑢 to 

the normal rate of capacity utilization. Although such a non-linear specification is 

plausible from an empirical point of view, the further 𝑢𝑢 is from the normal rate of capacity 

utilisation, the lower the adjustment speed of ℎ to its steady state.  

In our opinion, non-linearities are natural components of oscillating behaviour in 

a dynamic system. However, we can differentiate between two types of non-linearities: 

those that are intrinsic to the model due to the interaction of endogenous variables and 

those that result from a non-linear specification for behavioural variables. If the non-linear 

specification is supported by theoretical or empirical evidence and has a superior fit 

compared to the linear one, it should be incorporated into the model. However, if the 

choice between linear and non-linear specifications is unclear and the benefits of the non-

linear specification are not evident, we opt for the linear one, in which the dynamics of 

the model are only affected by the interaction of endogenous variables, and not by ad-hoc 

non-linearity assumptions on behavioural equations. 

In what follows we show the dynamics of the model with such a specification are 

quite like the dynamics of the baseline SSM, with both admitting scope for permanent 

cyclical behaviour. As in Serrano and Freitas (2017), we assume that workers do not save 

and that capitalists save a positive fraction of their income, namely 𝑠𝑠. Besides, we assume 

that the consumption function is given by 𝐶𝐶 = 𝑍𝑍 + 𝑐𝑐𝑌𝑌, where the autonomous 

consumption, namely 𝑍𝑍, is the only autonomous component of aggregate demand, and 𝑐𝑐 

denotes the marginal propensity to consume. In this case, the output is given by the SS 

according to: 

 
6 Of course that we could have chosen another specification carrying out the non-linearity. The choice made 

here is according for instance with Nikiforos et al. (2023, p. 4) 
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 𝑌𝑌 = 𝑍𝑍
𝑠𝑠−ℎ

                                                 (6) 

where 𝑠𝑠 = 1 − 𝑐𝑐 is the marginal propensity to save. By taking logs, and differentiating 

equation (6), one obtains:  

𝑌𝑌� = �̂�𝑍 + 1
𝑠𝑠−ℎ

ℎ̇                                                (7)                           

Using the standard notation that �̂�𝑍 = 𝑔𝑔𝑍𝑍 and  𝑌𝑌� = 𝑔𝑔𝑌𝑌 and substituting (5) into (7), 

one obtains after some algebraic manipulation the growth rate of output in the baseline 

SSM: 

𝑔𝑔𝑌𝑌 = 𝑔𝑔𝑍𝑍 + 1
𝑠𝑠−ℎ

[ℎ𝛾𝛾(𝑢𝑢 − 𝜇𝜇)]          (8) 

By substituting (5)’ into (7), one obtains the growth rate of output in the alternative 

SSM: 

𝑔𝑔𝑌𝑌 = 𝑔𝑔𝑍𝑍 +
ℎ� 𝛾𝛾

1+𝜃𝜃|𝑢𝑢−𝜇𝜇|�(𝑢𝑢−𝜇𝜇)

𝑠𝑠−ℎ
                                             (8)’ 

From the definition of capacity utilization, namely 𝑢𝑢 = 𝑌𝑌
𝑌𝑌𝑓𝑓𝑓𝑓

, where 𝑌𝑌𝑓𝑓𝑓𝑓 stands for 

the full capacity output, one obtains after some algebraic manipulation the dynamics of 

the capacity utilization as:  

𝑢𝑢� = 𝑌𝑌� − 𝐾𝐾�                                                 (9) 

Substituting (5) and (8) into (9) one obtains the following differential equation for 

the rate of capacity utilization in baseline SSM: 

�̇�𝑢 = 𝑢𝑢 �𝑔𝑔𝑍𝑍 + ℎ
𝑠𝑠−ℎ

[γ(𝑢𝑢 − 𝜇𝜇)] − �ℎ
𝑣𝑣
� 𝑢𝑢�          (10) 

Alternatively, we can substitute (5)’ and (8)’ into (9) to obtain the following 

differential equation for the rate of capacity utilization in the alternative specification for 

the SSM: 

�̇�𝑢 = 𝑔𝑔(ℎ,𝑢𝑢) = 𝑢𝑢 �𝑔𝑔𝑍𝑍 +
ℎ� 𝛾𝛾
1+𝜃𝜃|𝑢𝑢−𝜇𝜇|�(𝑢𝑢−𝜇𝜇)

𝑠𝑠−ℎ
− ℎ

𝑣𝑣
𝑢𝑢�                          (10)’ 

Despite the changes conveyed by the non-linear investment reaction to the deviation 

of the degree of utilization from its normal level, systems formed by (5) and (10) and (5)’ 

and (10)’ have the same equilibrium solutions. From (5) and (5)’ evaluated in steady state, 

one obtains the following meaningful solution for the rate of capacity utilization: 
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𝑢𝑢∗ = 𝜇𝜇                                                       (11) 

Equation (11) shows that utilization equals the normal rate of capacity utilization 

in the long run for both models. From (10) and (10)’ evaluated in steady state and by 

considering (11), one obtains: 

 ℎ∗ = 𝑣𝑣𝑔𝑔𝑍𝑍
𝜇𝜇

                                              (12) 

  Equation (12) determines the required investment share that equalizes investment 

and savings for both specifications of the investment reaction function. Now we have to 

consider a particular Jacobian for each of the systems. For the baseline model the Jacobian 

is given by: 

𝐽𝐽(ℎ,𝑢𝑢) = �
𝛾𝛾(𝑢𝑢 − 𝜇𝜇)  𝛾𝛾ℎ

𝑢𝑢 �𝛾𝛾𝑠𝑠(𝑢𝑢−𝜇𝜇)
(𝑠𝑠−ℎ)2 −

𝑢𝑢
𝜈𝜈
� 𝑔𝑔𝑍𝑍 + 𝛾𝛾ℎ

(𝑠𝑠−ℎ)
(𝑢𝑢 − 𝜇𝜇) − ℎ𝑢𝑢

𝜈𝜈
+ 𝑢𝑢 �� 𝛾𝛾ℎ

𝑠𝑠−ℎ
� − ℎ

𝜈𝜈
��                    (13) 

 

  For the modified model with equations (5)’ and (10)’, the Jacobian is given by: 

𝐽𝐽(ℎ,𝑢𝑢) =

�
𝛾𝛾 � 𝑢𝑢−𝜇𝜇

1+𝛳𝛳|𝑢𝑢−𝜇𝜇|
�  𝛾𝛾ℎ �(1+𝛳𝛳|𝑢𝑢−𝜇𝜇|)−|𝑢𝑢−𝜇𝜇|

(1+𝛳𝛳|𝑢𝑢−𝜇𝜇|)2
�

𝑢𝑢 �� 𝑢𝑢−𝜇𝜇
1+𝛳𝛳|𝑢𝑢−𝜇𝜇|

� � 𝛾𝛾𝑠𝑠
(𝑠𝑠−ℎ)2

� − 𝑢𝑢
𝜈𝜈
� 𝑔𝑔𝑍𝑍 + 𝛾𝛾ℎ

𝑠𝑠−ℎ
� (𝑢𝑢−𝜇𝜇)
1+𝛳𝛳|𝑢𝑢−𝜇𝜇|

� − ℎ𝑢𝑢
𝜈𝜈

+ 𝑢𝑢 �� 𝛾𝛾ℎ
𝑠𝑠−ℎ

� � 1
(1+𝛳𝛳|𝑢𝑢−𝜇𝜇|)2

� − ℎ
𝜈𝜈
�
�       (14) 

From (13) and (14) evaluated at the equilibrium point (ℎ∗,𝑢𝑢∗) = �𝜈𝜈𝑔𝑔𝑍𝑍
𝜇𝜇

, 𝜇𝜇�, we can 

formulate the following proposition.  

Proposition 1: The eigenvalues of (13) and (14) when the systems (5) and (10) and (5)’ 

and (10)’ respectively evaluated at the steady state solution (ℎ∗,𝑢𝑢∗) = �𝜈𝜈𝑔𝑔𝑍𝑍
𝜇𝜇

, 𝜇𝜇� are the 

same. 

Proof. The proof is based on the fact that evaluating both (13) and (14) in the steady-state 

solution, namely 𝑢𝑢∗ = 𝜇𝜇 and  ℎ∗ = 𝑣𝑣𝑔𝑔𝑍𝑍
𝜇𝜇

, the Jacobian is the same for both systems and is 

given by:   

 𝐽𝐽(ℎ∗,𝑢𝑢∗) = �
0 𝛾𝛾 𝑔𝑔𝑍𝑍𝑣𝑣

𝜇𝜇

− 𝜇𝜇2

𝑣𝑣
𝑔𝑔𝑍𝑍 �

𝑣𝑣𝛾𝛾
𝑠𝑠−𝑣𝑣𝜇𝜇𝑔𝑔𝑍𝑍

− 1�
�                                 (15) 

  The characteristic polynomial of the Jacobian matrix (15) at (ℎ∗,𝑢𝑢∗)  is given by:
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𝜆𝜆2 − 𝑔𝑔𝑍𝑍 �
𝛾𝛾𝜇𝜇𝛾𝛾−𝜇𝜇𝑠𝑠+𝛾𝛾𝑔𝑔𝑍𝑍𝑍

𝜇𝜇𝑠𝑠−𝛾𝛾𝑔𝑔𝑍𝑍
� 𝜆𝜆 + 𝜇𝜇𝛾𝛾𝑔𝑔𝑧𝑧 = 0                              (16) 

  The roots of the characteristic polynomial are the eigenvalues of both systems, 

which are the same and given by:  

𝜆𝜆1,2 = −1
2

 � 𝛾𝛾𝜈𝜈𝜇𝜇
𝑠𝑠𝜇𝜇−𝑣𝑣𝑔𝑔𝑍𝑍

− 1�𝑔𝑔𝑍𝑍 ±
�(𝑔𝑔𝑍𝑍)2� 𝛾𝛾𝛾𝛾𝜇𝜇

𝑠𝑠𝜇𝜇−𝑣𝑣𝑔𝑔𝑍𝑍
−1�

2
−4𝜇𝜇𝛾𝛾𝑔𝑔𝑍𝑍

2
                     (17) 

Insofar as eigenvalues determine the stability of a dynamical system, systems with 

the same eigenvalues will behave similarly in terms of stability. ∎ 

To study the stability of both systems, we take as starting point Gandolfo (1997, 

p. 254), for whom 𝑡𝑡𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) < 0 and 𝑑𝑑𝑒𝑒𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) > 0 provides sufficient conditions7 

for asymptotic stability of a two-dimensional system of differential equations, which are 

given respectively by: 

 𝑡𝑡𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) = 𝑔𝑔𝑍𝑍 �
𝑣𝑣𝛾𝛾

𝑠𝑠−𝑣𝑣𝜇𝜇𝑔𝑔𝑍𝑍
− 1�                                        (18)                                                   

𝑑𝑑𝑒𝑒𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) = 𝜇𝜇𝛾𝛾𝑔𝑔𝑍𝑍                                                 (19) 

  It is easy to see that 𝑑𝑑𝑒𝑒𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) > 0 due to the positivity of all parameters. To 

find the sign of 𝑡𝑡𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗), Serrano and Freitas (2017) showed that if 𝑐𝑐 + 𝑣𝑣𝑔𝑔𝑍𝑍
𝜇𝜇

+ 𝛾𝛾𝜈𝜈 < 1 

then 𝑡𝑡𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) < 0. That condition has a sound economic meaning8 and is satisfied by 

assuming a sufficiently low value for the reaction parameter 𝛾𝛾. Although the stability of 

the system is figured out by the trace and determinant of the Jacobian,  with this 

information only it is not possible to fully characterise the dynamics of the system around 

the equilibrium point (ℎ∗,𝑢𝑢∗). To consider this point let us prove the following lemma.  

 

Lemma 1. 𝑡𝑡𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) < 0 iff 𝑣𝑣𝑔𝑔𝑍𝑍 < 𝜇𝜇(𝑠𝑠 − 𝛾𝛾𝜈𝜈) 

 
7  We confirm what was pointed out by Blecker and Setterfield (2019, p. 361) “stability of the Sraffian 

supermultiplier model thus demands that we make certain assumptions about the size of the marginal 

propensity to send and its components parts. These assumptions are no doubt contestable (…). 

Nevertheless, we can now state unequivocally that early reservations notwithstanding, there are conditions 

under which the Sraffian supermultiplier model is demonstrably stable.” 

8 According to Serrano and Freitas (2017, p. 76): “This additional condition implies that the local dynamic 

stability of the fully adjusted equilibrium requires that the aggregate marginal propensity to spend in the 

neighbourhood of the fully adjusted equilibrium must be lower than one.” 
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Proof. After some algebraic manipulation, we can rewrite (18) as 𝑡𝑡𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) =

� 𝛾𝛾𝜈𝜈𝜇𝜇
𝑠𝑠𝜇𝜇−𝑣𝑣𝑔𝑔𝑍𝑍

− 1�𝑔𝑔𝑍𝑍. Hence 𝑡𝑡𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) < 0 iff 𝛾𝛾𝜈𝜈𝜇𝜇
𝑠𝑠𝜇𝜇−𝑣𝑣𝑔𝑔𝑍𝑍

< 1, which yields after some 

algebraic manipulation 𝑣𝑣𝑔𝑔𝑍𝑍 < 𝜇𝜇(𝑠𝑠 − 𝛾𝛾𝜈𝜈). ∎ 

We can rewrite 𝑣𝑣𝑔𝑔𝑍𝑍 < 𝜇𝜇(𝑠𝑠 − 𝛾𝛾𝜈𝜈) as 𝛾𝛾 < 𝑠𝑠𝜇𝜇−𝑣𝑣𝑔𝑔𝑍𝑍
𝜇𝜇𝑣𝑣

 to emphasise that the additional 

condition raised by Serrano and Freitas (2017, p. 76) to guarantee that 𝑡𝑡𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) < 0  

implies that “the investment response of firms designed specifically to restore the capacity 

utilization rate to its normal level must be sufficiently weak” as pointed out by Blecker 

and Setterfield (2019, p. 361). It is easy to see that the conditions 𝑡𝑡𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) < 0 and 

𝑑𝑑𝑒𝑒𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) > 0 implies that both roots are either negative or complex with the real part 

negative. The first case is obtained if the discriminant ∆=  𝑡𝑡𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗)2 −

4𝑑𝑑𝑒𝑒𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) = � 𝛾𝛾𝜈𝜈𝜇𝜇
𝑠𝑠𝜇𝜇−𝑣𝑣𝑔𝑔𝑍𝑍

− 1�
2
− 4𝜇𝜇𝛾𝛾𝑔𝑔𝑍𝑍 < 0. One of the roots is negative, and the other 

may also be shown to be negative by considering that  𝑡𝑡𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) +

� 𝑡𝑡𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗)2 − 4𝑑𝑑𝑒𝑒𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) < 0. If it is the case, we can unambiguously say that 

(ℎ∗,𝑢𝑢∗) is a stable node insofar as the eigenvalues are real and negative.  

But, we have to bear in mind that 𝑡𝑡𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) < 0 and 𝑑𝑑𝑒𝑒𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) > 0 may give 

rise to a second case, in which the discriminant is negative, which corresponds to the case 

of a stable spiral. Hence, while those conditions guarantee the asymptotical stability of 

(ℎ∗,𝑢𝑢∗), we cannot distinguish beforehand if the equilibrium is a stable node or a stable 

spiral. Some authors such as Nikiforos et al. (2023, p. 4) referring to the Jacobian of the 

baseline system consider that “[t]he oppositely signed off-diagonal entries make cycles 

likely: as subsequent discussion shows, eigenvalues are very likely to be complex.” But 

their subsequence discussion is based on a heuristic analysis with a sound economic 

meaning but that lacks a formal demonstration. In the next proposition, we show that the 

necessary condition for guaranteeing that the trace is negative is the same as needed to 

prove that the eigenvalues are complex numbers.   

Proposition 2. If 𝑔𝑔𝑍𝑍 �
𝛾𝛾𝑣𝑣𝜇𝜇

𝑠𝑠𝜇𝜇−𝑣𝑣𝑔𝑔𝑍𝑍
− 1�

2
< 4𝜇𝜇𝛾𝛾 and if 𝑣𝑣𝑔𝑔𝑍𝑍 < 𝜇𝜇(𝑠𝑠 − 𝛾𝛾𝜈𝜈) the equilibrium point 

𝑃𝑃 = (ℎ∗,𝑢𝑢∗) is a stable spiral focus. 

Proof. If ∆< 0, which corresponds to the case in which the eigenvalues of 𝐽𝐽(ℎ∗,𝑢𝑢∗) are 

complex conjugated roots of the characteristic polynomial. If it happens, and the real part 

of the complex roots is different from zero, the point 𝑃𝑃 = (ℎ∗,𝑢𝑢∗) is a hyperbolic fixed 

point and we can use the Hartman-Grobman linearization theorem, to prove the 
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asymptotic stability of the system around (ℎ∗,𝑢𝑢∗). The real part of the complex roots is 
1
2
𝑡𝑡𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) ≠ 0,  which ensures that we can use the linearization theorem in a 

neighbourhood of (ℎ∗,𝑢𝑢∗). Besides, lemma 1 guarantees that 𝑡𝑡𝑡𝑡𝐽𝐽(ℎ∗,𝑢𝑢∗) < 0  if 𝑣𝑣𝑔𝑔𝑍𝑍 <

𝜇𝜇(𝑠𝑠 − 𝛾𝛾𝜈𝜈). Hence, as far as the two eigenvalues are complex with a negative real part, we 

can say that the equilibrium point (ℎ∗,𝑢𝑢∗) is a stable spiral.                  ∎ 

  Proposition 2 confirms, from a formal perspective, what was suggested by 

Nikiforos et al. (2023) – that the baseline model has an equilibrium with convergent 

dumped cyclical trajectories, as shown in figure 1. The modified model, equipped with 

equations (5)’ and (10)’, also exhibits the same behaviour, insofar as the eigenvalues are 

identical for both systems as shown in figure 2.  

 

Figure 1. If 𝛾𝛾 = 0.112,𝜇𝜇 = 0.9,𝑔𝑔𝑧𝑧 = 0.02, 𝑠𝑠 = 0.199, 𝜐𝜐 = 3.5, t=0...2000, the positive 

equilibrium 𝑃𝑃∗ = (0.07777777778, 0.9) is locally asymptotically stable with two 

eigenvalues complex −0.00133822181250000 ± 0.0231993353835135 𝑚𝑚.  

 



12 
 

Figure 2. If 𝛾𝛾 = 0.1, 𝜇𝜇 = 0.96,𝑔𝑔𝑧𝑧 = 0.06, 𝑠𝑠 = 0.7, 𝜐𝜐 = 4,𝛳𝛳 = 0.4, t=200...1000, the 

positive equilibrium 𝑃𝑃∗ = (0.25, 0.96) is locally asymptotically stable with two 

eigenvalues complex −0.00333333333000000 ± 0.0758214276369887 𝑚𝑚.  

 

3. Hopf Bifurcation in the Sraffian Supermultiplier 

Bifurcation analysis involves studying the behaviour of the system as parameters 

are varied and identifying critical values where qualitative changes in the dynamics occur. 

As far as the two eigenvalues of both systems are likely to be complex, there is scope for 

permanent cyclical behaviour if a bifurcation occurs at that value of the parameter where 

the equilibrium changes from being locally stable to unstable. To prove the existence of 

such a limit cycle in the SSM, we can use the Hopf theorem (see, e.g, Guckenheimer and 

Homes, 1983), which demands that at chosen bifurcation parameter, let us say 𝛾𝛾 =  𝛾𝛾 ∗, 

𝜆𝜆1,2 become a pair of purely imaginary eigenvalues and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑( 𝛾𝛾 ∗)
𝑑𝑑𝛾𝛾

≠ 0. We consider that 

the sensitivity of the investment share to the discrepancies between actual and normal 

utilization, namely 𝛾𝛾, as the most appropriate candidate for the Hopf bifurcation 

parameter. As shown in eq. (17), both the real and the imaginary parts of the complex 

eigenvalues are also a function of 𝛾𝛾. Hence, the dynamics of the whole model are affected 

by this parameter and, a Hopf bifurcation asserts that for some interval of values close to 

its critical value, closed orbits of the dynamical system exist.  

Other candidates to be the Hopf bifurcation parameter would be the normal rate 

of capacity utilization, namely 𝜇𝜇, or the growth rate of autonomous demands, namely 𝑔𝑔𝑧𝑧. 

Although exogenous, there is abundant evidence pointing out to volatile behaviour of 

both variables. Regarding the former, the findings of Bassi et al. (2022) highlight 

variability in the normal rate of utilization hold over different ranges of variation in the 

actual rate. There are in fact two competing views concerning the endogeneity of the 

normal rate of capacity utilization. For authors such as Serrano (1995) and Skott (2010), 

it is not an endogenous variable but rather a parameter, with the actual rate adjusting 

towards it, as it happens in the SSM model. But for Dutt (1997) and Nikiforos (2018), it 

is an endogenous variable that adjusts to the actual rate. Girardi and Pariboni (2018, p. 

342) challenged this view considering that “the derivation of the macroeconomic 

adjustment mechanism from the microeconomic analysis involves a logical leap that can 

be justified only by a rather peculiar aggregation process”. 
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Insofar as our focus here is not on the controversy but rather to show the existence 

of permanent cycles in the SSM, we swerve into choosing this parameter as the 

bifurcation one. In the same vein, we could consider the possibility of using the growth 

rate of autonomous demands as such a parameter. Authors such as Skott (2017, 2019), 

and even Serrano et al.  (2023) have pointed out variations in this parameter. In principle, 

such variations could give rise to a limit cycle if it were chosen as the bifurcation 

parameter. But here also to avoid getting into the controversy if such variations are at 

odds with the SSM, which is not central to the main point of our paper, we have chosen 

the sensitivity of the investment share to the discrepancies between actual and normal 

utilization as a viable candidate for the bifurcation parameter, and a bifurcation may occur 

when changes in its value occur, as outlined in the next proposition. 

Proposition 3: The system of equations (5) and (10) and (5)’ and (10)’ undergoes a Hopf 

bifurcation if 𝑣𝑣𝑔𝑔𝑍𝑍 < 𝜇𝜇(𝑠𝑠 − 𝛾𝛾𝜈𝜈).   

Proof. Using 𝛾𝛾 as the bifurcation parameter allows us to write both the real and the 

imaginary parts of the eigenvalues of the Jacobian at (ℎ∗,𝑢𝑢∗) as a function of the 

bifurcation parameter 𝛾𝛾, namely 𝜆𝜆1,2 = 𝜃𝜃(𝛾𝛾) ± 𝑚𝑚𝑖𝑖(𝛾𝛾). Besides, 𝜃𝜃(𝛾𝛾) = 0 ⇔ �̅�𝛾 =
𝑠𝑠𝜇𝜇−𝑣𝑣𝑔𝑔𝑍𝑍

𝑣𝑣𝜇𝜇
. The existence of a positive critical value to the bifurcation parameter is 

guaranteed if 𝑣𝑣𝑔𝑔𝑍𝑍 < 𝜇𝜇(𝑠𝑠 − 𝛾𝛾𝜈𝜈), which implies that 𝑠𝑠𝜇𝜇 > 𝑣𝑣𝑔𝑔𝑍𝑍. It makes the pair of 

complex conjugate eigenvalues to become purely imaginary, with no other eigenvalues 

with zero real part at (ℎ∗,𝑢𝑢∗). This means that the pair of complex conjugate eigenvalues 

become pure imaginary at the critical value of the parameter, with no other eigenvalues 

with zero real part at (ℎ∗,𝑢𝑢∗). Besides, it is easy to see that:   
𝜕𝜕𝜃𝜃(𝛾𝛾�)
𝜕𝜕𝛾𝛾

=  1
2
� 𝜇𝜇𝜈𝜈𝑔𝑔𝑧𝑧
𝜇𝜇𝑠𝑠−𝜈𝜈𝑔𝑔𝑧𝑧

� > 0, satisfying the transversality condition. Hence, the conditions for 

the existence of a Hopf bifurcation hold and the asymptotically stable equilibrium can 

give rise to a limit cycle as shown in figure 2.  ∎     

  To illustrate Proposition 3, as the real part of the eigenvalues is given by  𝜃𝜃(𝛾𝛾) =

−1
2

 � 𝛾𝛾𝜈𝜈𝜇𝜇
𝑠𝑠𝜇𝜇−𝑣𝑣𝑔𝑔𝑍𝑍

− 1� 𝑔𝑔𝑍𝑍, which is a continuous function of 𝛾𝛾, we can use the Intermediate 

Value Theorem and prove that there exists �̅�𝛾 such that 𝜃𝜃(�̅�𝛾) = 0. We can show that 𝑃𝑃∗ is 

a hyperbolic stable focus for 𝜃𝜃(𝛾𝛾1) < 0,  considering for instance that 𝛾𝛾1 =

0.1124999999, which yields  a stable focus 𝑃𝑃∗(0.25, 0.96)  with the real part of the 

eigenvalues being given by 𝜃𝜃(𝛾𝛾1) = −2.40000000000000 10−11 < 0. If we choose 
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𝛾𝛾2 = 0.1125000001, the equilibrium 𝑃𝑃∗(0.25, 0.96) is an unstable focus insofar as the 

real part becomes positive 𝜃𝜃(𝛾𝛾2) = 2.88000000000 10−11 > 0. The Intermediate Value 

Theorem applied to the function 𝜃𝜃(𝛾𝛾) assures us that there exists at least one 𝛾𝛾 =

�̅�𝛾𝜖𝜖[𝛾𝛾1, 𝛾𝛾2] such that 𝜃𝜃(�̅�𝛾) = 0, that is, the complex eigenvalues are purely imaginary. It 

is possible to show that the Hopf bifurcation parameter that satisfies 𝜃𝜃(�̅�𝛾) = 0  is given 

by 𝛾𝛾 = �̅�𝛾 = 0.1125. In figure 2, each colour represents particular initial conditions 

meaning that the existence of the cycle is robust in face of the choice made for the 

collection of parameters. 

 

Figure 3. Endogenous cycle in the baseline model. Parameters are fixed as  γ = �̅�𝛾 =

0.1125,𝑔𝑔𝑍𝑍 = 0.06, 𝑠𝑠 = 0.7, 𝜈𝜈 = 4, 𝜇𝜇 = 0.96. Here  𝑡𝑡 = 0 … 1000.  The unique positive 

equilibrium 𝑃𝑃∗ = (ℎ∗,𝑢𝑢∗) =  (0.25, 0.96), with two complex conjugate and zero real 

part, that is ±0.080498447189924 𝑚𝑚 

  Before the bifurcation point, the stable fixed point attracts all nearby trajectories, 

leading to convergence towards the equilibrium. Beyond the bifurcation point, the stable 

periodic orbit attracts nearby trajectories, and the system exhibits periodic oscillations, 

which characterises a transcritical Hopf bifurcation. In the presence of such a bifurcation, 

the system undergoes a qualitative change in its dynamics as the bifurcation parameter 

crosses a critical value giving rise to a limit cycle of the dynamical system9, whereby the 

oscillations are shown in figures 3 and 4 being an intrinsic characteristic of the baseline 

 
9 The Hopf bifurcation theorem only guarantees the existence of a small-amplitude limit cycle that arises 

from a supercritical Hopf bifurcation. This means that the limit cycle exists for a certain range of parameter 

values, and it is locally stable, but it may not be globally stable. 
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SSM and the modified version, namely equations (5)’ and (10)’, equipped as the non-

linear investment reaction function. As the eigenvalues of this system are equal to those 

of the baseline model, the demonstration of the existence of a limit cycle in that model is 

the same, and figure 3 illustrates the cycle using different values for the parameters.  

 

Figure 4. Endogenous cycle in the modified model. Parameters are fixed as 𝛾𝛾 = �̅�𝛾 =

0.1125,  𝜇𝜇 = 0.96,𝑔𝑔𝑧𝑧 = 0.06, 𝑠𝑠 = 0.7, 𝜐𝜐 = 4,𝛳𝛳 = 0.4, 𝑡𝑡 = 0 … 1000. The unique  

positive equilibrium P∗ = (ℎ∗,𝑢𝑢∗) = (0.25, 0.96), has two complex conjugate 

eigenvalues with zero real part  ± 0.0804984471899924 𝑚𝑚. 

 Regarding the modified model, we could follow a complementary route to 

investigate the existence of the limit cycle – or its non-existence – by using the Dulac-

Bendixson theorem. On the one hand, if the Bendixson-Dulac criterion is satisfied, it 

means that the planar system does not have a limit cycle in a particular region of the phase 

space. On the other, if the autonomous system has a region in which the divergence of the 

vector field is positive and a region in which the divergence is negative, and if these 

regions are bounded by closed curves (i.e., no trajectories can cross these curves), then it 

can have at least one closed trajectory or limit cycle. To use the Bendixson-Dulac criteria 

to prove the non-existence of a limit cycle, we need to find a Dulac function, namely 

𝜑𝜑(ℎ,𝑢𝑢), which is a 𝐶𝐶1 function such that the expression: 𝜕𝜕(𝜑𝜑𝑓𝑓)
𝜕𝜕ℎ

+ 𝜕𝜕(𝜑𝜑𝑔𝑔)
𝜕𝜕𝑢𝑢

 has the same sign 

(≠ 0) almost everywhere in a simply connected region of 𝑅𝑅2 . In what follows, we show 

that 𝜑𝜑(ℎ,𝑢𝑢) = 1
ℎ𝑢𝑢

 satisfies those conditions.  

Proposition 4: In the modified model, equipped with the non-linear investment reaction 

function, there exists a Dulac function, which is a 𝐶𝐶1 function 𝜑𝜑(𝑥𝑥,𝑦𝑦) such that the 
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expression: 𝜕𝜕(𝜑𝜑𝑓𝑓)
𝜕𝜕ℎ

+ 𝜕𝜕(𝜑𝜑𝑔𝑔)
𝜕𝜕𝑢𝑢

 has the same sign (≠ 0) almost everywhere if 

� 𝛾𝛾
𝑠𝑠−ℎ

� � 1
(1+𝛳𝛳|𝑢𝑢−𝜇𝜇|)2

� − 1
𝜈𝜈
≠ 0.  

Proof. Let us show that the function 𝜑𝜑(ℎ,𝑢𝑢) = 1
ℎ𝑢𝑢

 is a Dulac function for the modified 

system. By multiplying 𝑓𝑓(ℎ,𝑢𝑢) and  𝑔𝑔(ℎ,𝑢𝑢) by it, respectively, we get the following 

equations: 

𝜑𝜑𝑓𝑓 = � 𝛾𝛾
1+𝜃𝜃|𝑢𝑢−𝜇𝜇|

� (𝑢𝑢−𝜇𝜇)
𝑢𝑢

                                                      (20) 

𝜑𝜑𝑔𝑔 =  �1
ℎ
� �𝑔𝑔𝑍𝑍 +

ℎ� 𝛾𝛾
1+𝜃𝜃|𝑢𝑢−𝜇𝜇|�(𝑢𝑢−𝜇𝜇)

𝑠𝑠−ℎ
− ℎ

𝑣𝑣
𝑢𝑢�                                          (21) 

  By taking the derivative of 𝜑𝜑𝑓𝑓 according to ℎ, one obtains: 

𝜕𝜕
𝜕𝜕ℎ

(𝜑𝜑𝑓𝑓) = 0                                                     (22) 

and the derivative of 𝜑𝜑𝑔𝑔 according to 𝑢𝑢, yields: 

𝜕𝜕
𝜕𝜕ℎ

(𝜑𝜑𝑔𝑔) = � 𝛾𝛾
𝑠𝑠−ℎ

� � 1
(1+𝛳𝛳|𝑢𝑢−𝜇𝜇|)2

� − 1
𝜈𝜈
                                (23) 

 Thus, from the hypothesis, we conclude that: 

𝜕𝜕
𝜕𝜕ℎ

(𝜑𝜑𝑓𝑓) + 𝜕𝜕
𝜕𝜕ℎ

(𝜑𝜑𝑔𝑔) = � 𝛾𝛾
𝑠𝑠−ℎ

� � 1
(1+𝛳𝛳|𝑢𝑢−𝜇𝜇|)2

� − 1
𝜈𝜈
≠ 0                (24) 

 ∎ 

  If we could guarantee that � 𝛾𝛾
𝑠𝑠−ℎ

� � 1
(1+𝛳𝛳|𝑢𝑢−𝜇𝜇|)2

� − 1
𝜈𝜈
  does not change its sign in a 

simply connected region of the plane, we would conclude the non-existence of a limit 

cycle. Using the parameters of figures 3 and 4, to illustrate the working of Proposition 4, 

in the red region on the right of the yellow region, we can have a simply connected set in 

the red region on the right of the yellow one, which allows us to conclude the non-

existence of a limit cycle in that region. However, in a region close to the equilibrium 

point where we the  modified system have a region with positive divergence (yellow), in 

which  �0.1125
0.7−ℎ

� � 1
(1+0.4|𝑢𝑢−0.96|)2

� − 1
4

> 0   and a region with  negative divergence (red on 

the left of the yellow region), in which �0.1125
0.7−ℎ

� � 1
(1+0.4|𝑢𝑢−0.96|)2

� − 1
4

< 0, does not allow 
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us to conclude the non-existence of the limit cycle, and in fact, the existence of the cycle 

was proven in proposition 3 using the Hopf bifurcation theorem.  

 

  It is important to note that in the modified SSM, the growth rate of the autonomous 

component remains constant, giving just the trend to the output growth rate. Thus, 

changes in the growth rate of autonomous consumption cannot explain the cycles in the 

present case. Once the critical value of the bifurcation parameter is met, the system 

displays oscillatory behaviour, which differs from the RBC literature, where external 

shock effects dissipate over time. In face of that, we do not agree with the view that 

cyclical fluctuations do not affect ‘the behaviour of the system in the long run’ or that 

‘(…) the only way to have a consistent story of the cycle with the long run theory of 

growth would be to resort to random shocks.’ as pointed out by Nikiforos et al. (2023, p. 

9). What we prove is that under fair conditions the model may undergo a Hopf bifurcation 

and, while such a bifurcation typically results in the emergence of a limit cycle, it is 

possible for a dynamical system that has undergone it to return to a stable equilibrium 

state10. 

 

4. Concluding Remarks 

 
10 If the bifurcation parameter is adjusted back to its initial value, it is possible for the limit cycle to 

disappear, and the system can return to a stable equilibrium state. In general, it is easier to return to a stable 

equilibrium state if the limit cycle is small and weakly attracting, rather than large and strongly attracting.  
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In this note, we investigated the existence of limit cycles both in a modified model with 

a non-linear investment reaction function. Using the sensitivity of the investment share 

to the discrepancies between actual and normal utilization as the bifurcation parameter, 

we have found that the conditions for the emergence of a bifurcation are fairly achievable 

from an analytical viewpoint. We are aware that concerns can be raised about the 

plausibility of the values of the parameters chosen, and if the critical value of the 

bifurcation will be met in actual economies. Not disregarding these as essential points, 

however, our aim here is just to show the presence of endogenous cycles in a non-linear 

version. Our findings do support the view that the SSM is compatible with the fact that 

most macroeconomic variables exhibit fluctuations around their long-term trends.  

 

References 

Allain, O. 2015. Tackling the Instability of Growth: A Kaleckian-Harrodian model with 

an Autonomous Expenditure Component. Cambridge Journal of Economics. 39(5): 

1351 – 1371. 

Araujo, R. and Moreira, H. (2021). Testing a Goodwin’s Model with Capacity Utilization 

to the US Economy. In: Orlando, G., Pisarchik, A.N., Stoop, R. (eds) Nonlinearities 

in Economics. Dynamic Modeling and Econometrics in Economics and Finance, vol 

29. Springer, Cham. 

Bassi., F., Bauermann, T, Lang, D. and Setterfield, M. (2022). Is capacity utilization 

variable in the long run? An agent-based sectoral approach to modeling hysteresis in the 

normal rate of capacity utilization. Structural Change and Economic Dynamics, 63, 196 

– 212. 

Blecker, R. and Setterfield, M. (2019). Heterodox Macroeconomics: Models of Demand, 

Distribution and Growth. Cheltenham, UK, Edward Elgar.  

Dutt, A. 1997. Equilibrium, path dependence and hysteresis in post-Keynesian models. 

In P. Arestis, G. Palma, and M. Sawyer (Eds.), Capital Controversy, Post-Keynesian 

Economics and the History of Economic Thought: Essays in Honour of Geoff Harcourt. 

London: Routledge. 



19 
 

Freitas, F. and Christianes, R. 2020. A Baseline Supermultiplier Model for the Analysis 

of Fiscal Policy and Government Debt. Review of Keynesian Economics 8 (3): 313–

338.  

Freitas, F and Serrano, F. (2015) Growth Rate and Level Effects, the Stability of the 

Adjustment of Capacity to Demand and the Sraffian Supermultiplier, Review of 

Political Economy, 27:3, 258-281 

Gandolfo, G. 1997. Economic Dynamics. Heidelberg: Springer-Verlag. 

Girardi, D, Pariboni, R. 2019. Normal utilization as the adjusting variable in Neo-

Kaleckian growth models: A critique. Metroeconomica. ; 70: 341– 358. 

Guckenheimer, J. and Homes, P. 1983. Nonlinear oscillations, dynamical systems and 

bifurcations of vector fields. Applied mathematical sciences v. 42. Springer-Verlag 

New York. 

Haluska, G, Braga, J, Summa, R. 2021. Growth, investment share and the stability of the 

Sraffian Supermultiplier model in the U.S. economy (1985–

2017). Metroeconomica. 72, 345– 364. 

Kaldor, N. 1940 A Model of the Trade Cycle. Economic Journal, 50, 78 – 92. 

Lavoie, M. 2015. Convergence Towards the Normal Rate of Capacity Utilisation in Neo 

Kaleckian Models: The Role of Non-Capacity Creating Autonomous Expenditures. 

Metroeconomica. 67(1): 172 – 201. 

Lavoie, M. 2016. Prototypes, Reality and the Growth Rate of Autonomous Consumption 

Expenditure: A rejoinder. Metroeconomica. 68(1): 194-199. 

Nikiforos, M. 2018. Some comments on the Sraffian Supermultiplier approach to growth 

and distribution. Journal of Post Keynesian Economics 41 (4): 659–75. 

Nikiforos, M., Santetti, M. and von Arnim, R. 2023. The Sraffian Supermultiplier and 

Cycles: Theory and Empirics.  Review of Political Economy (forthcoming)  

Sasaki, H. 2013. Cyclical growth in a Goodwin-Kalecki-Marx model. Journal of 

Economics, 108: 145 – 171. 

Serrano, F. 1995. Long Period Effective Demand and the Sraffian Supermultiplier. 

Contributions to Political Economy. 14(0): 67 – 90.  



20 
 

Serrano, F. and Freitas, F. 2017.The Sraffian Supermultiplier as an Alternative Closure 

for Heterodox Growth Theory. European Journal of Economics and Economic Policies: 

Intervention. 14(1): 70 – 91. 

Serrano, F., Summa, F. and Freitas, F. 2023 Autonomous Demand-led growth and the 

Supermultiplier: the theory, the model and some clarifications. Discussion Paper 

003|2023 Instituto de Economia, Universidade Federal do Rio de Janeiro. 

Setterfield, M. 2023. Whatever Happened to the ‘Goodwin Pattern’? Profit Squeeze 

Dynamics in the Modern American Labour Market. Review of Political 

Economy, 35:1, 263 – 286. 

Skott, P. 2010. Theoretical and Empirical Shortcomings of the Kaleckian Investment 

Function. Metroeconomica. 63(1): 109 – 138. 

Skott, P. 2017. Autonomous Demand and the Harrodian Criticism of the Kaleckian 

Model. Metroeconomica. 68(1): 185 – 193. 

Skott, P. 2019. “Autonomous demand, Harrodian instability and the supply side.” 

Metroeconomica, 70(2): 233 – 246. 

Summa, R., Petrini, G. and Teixeira, L. 2023. Cycles: Empirics and the Supermultiplier 

Theory, Review of Political Economy, (forthcoming).  

Hicks, J. 1950. A Contribution to the Trade Cycle. Oxford: Clarendon. 

Wiggins, S. 2003. Introduction to Applied Nonlinear Dynamical Systems and Chaos. 

Springer-Verlag New York, Inc. 

 


