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Abstract

We investigate the probability forecasting performance of a three-regime dynamic ordered

probit model framework suitable to forecast recessions, low growth periods and accelera-

tions for the U.S. and Japan. In a �rst step, we apply a non-parametric dating algorithm

for the identi�cation of these three phases. We compare the pseudo-out-of-sample fore-

casting skills of an otherwise standard binary dynamic probit model with a three-regime

dynamic ordered probit framework by means of a rolling-window exercise combined with

time-varying indicator selection. Based on a set of monthly macroeconomic and �nancial

leading indicators, the results show the superiority of the ordered probit framework to

forecast all three business cycle phases up to six months ahead under real-time conditions.

Apart from standard probability forecast evaluation measures, receiver-operating curves

and related summarizing statistics are computed.
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1 Introduction

In recent years, and especially since the 2007-08 global �nancial crisis and the resulting world-

wide economic recession, many countries have featured a prolonged period of low-growth cou-

pled with stagnant high unemployment rates (Adler et al., 2017). Subsequently, the standard

dichotomous classi�cation of the business cycle in expansionary and contractionary phases

seems to be somehow outdated for this new low-growth macroeconomic environment.

Following the work by Sichel (1994), a number of studies has already investigated the advan-

tages of extending the characterization of the business cycle into a three-phase phenomenon.

For instance, Krolzig and Toro (2001) study the interaction between U.S. real GDP and

employment using a three-state Markov-switching (MS)-VAR model, where the three (unob-

servable) states are associated with recessions, �normal� and high growth periods. Similarly,

Ferrara (2003) estimates a three-state MS-VAR for the US economy where the states are de-

noted as low, intermediate and high growth regimes, relative to the economy's trend growth

rate, see also Nalewaik (2011) and Ho and Yetman (2012). By contrast, while Schreiber

and Soldatenkova (2015) compute the probabilities for recessions, stagnations and expansions

from a subset-VAR for the US economy, Proaño (2017) proposes a non-parametric dating

algorithm for the identi�cation of accelerations, �normal� or low economic growth periods and

recessions, and predicts these phases for the German economy within an ordered probit model

framework. Further, Candelon et al. (2013) investigate a four-regime ordered probit model

allowing also for the di�erentiation between normal and severe recessions. Along the same

lines Carstensen et al. (2017) use a three-state Markov-switching dynamic factor model for

the prediction of ordinary and severe recessions.

An interesting advantage of a more di�erentiated characterization of the business cycle phe-

nomenon highlighted by Nalewaik (2011) and Proaño (2017) is that specifying a low or stag-

nant growth regime leads to improvement in the forecasting performance concerning economic

recessions, as the former may proceed or follow the latter. Therefore, a richer classi�cation of

the business cycle may have important advantages for policy-making in real time.

In this context, the contribution of this paper to the literature is the application of the three-

regime business cycle characterization and prediction proposed by work by Proaño (2017) to

two major industrialized economies which have experienced prolonged periods of low growth in

recent times: the U.S. and Japan. Through a thorough analysis of the forecasting performance

of the ordered probit model relative to the more standard binary probit model approach for

di�erent forecasting horizons we provide detailed insights on the value added of the ordered

probit approach in economies where low growth phases are not seldom or negligible.

Our results can be summarized as follows: First, corroborating the previous �ndings by

Nalewaik (2011) and Proaño (2017), we �nd for the U.S. and Japan that a three-phase ordered

probit model has indeed a superior performance � in statistical terms � than an analogous

binary probit model distinguishing only between recessions and accelerations for all considered
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forecast horizons. This is also true for the prediction of accelerations and normal or low growth

periods (when compared with the corresponding binary probit models) for particular horizons

in the U.S. and Japan, being this predictive superiority not statistically signi�cant in the other

cases. Further, binary probit models were not found to have a larger forecasting power. This

holds irrespective of the forecast horizon or forecast evaluation samples analyzed.

The remainder of this paper is organized as follows. In Section 2 we discuss a non-parametric

dating algorithm for the identi�cation of high and low growth phases and recessions along

the lines of Proaño (2017), as well as the ordered probit modeling approach used for the

prediction of these three business cycle phases. In section 3 we discuss our empirical results

concerning the U.S.A. and Japan, and compare the performance of the ordered probit model

in forecasting economic recessions with that of standard binary probit models using various

forecasting evaluation measures. Finally, we draw some concluding remarks from this study

in section 4.

2 Methodology

2.1 The Non-Parametric Dating Algorithm

As previously mentioned, we employ in the following empirical study the non-parametric

dating algorithm proposed by Proaño (2017) for the classi�cation of the business cycle into

economic accelerations, low growth phases and recessions. This algorithm consists of the

following stages: First, the recessionary phases are identi�ed according to the Harding and

Pagan (2002) extension of the Bry-Boschan (1971) algorithm, whereafter potentially reces-

sionary periods are those between a business cycle peak, de�ned as

{yt−k < ypt > yt+k , k = 1, ..., 5} (1)

where yt is the two-month moving average of the business cycle reference series, and a business

cycle trough, de�ned as

{yt−k > yτt < yt+k , k = 1, ..., 5}. (2)

As an additional censoring rule for the identi�cation of recessionary periods, Harding and

Pagan (2002) propose the use of the following measure of �severity� of an economic downturn

j

Sj = 0.5×Deepnessj ×Durationj (3)

where

Deepnessj = |ypt − yτt |/y
p
t , (4)

and Duration refers to the number of months between peak and trough of the economic

downturn considered (see also Anas et al., 2008). A recessionary period is identi�ed when

Sj > 0.025, as there is no consensus on the reference minimum duration and deepness of
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recessions (Darné and Ferrara, 2009, p.5).

The second stage of the Proaño (2017) dating algorithm consists of identifying among the

non-recessionary periods those which could be potentially considered as true economic accel-

erations or booms, in contrast to those which are periods of low or normal economic growth.

For this purpose, the six-month moving average of the period-to-period growth rates of the

reference series is calculated. An economic acceleration period is then identi�ed if

a) the annualized centered moving average period growth rate in t exceeds a pre-determined

and country/economy-speci�c value ḡmint which stands for the �normal� growth given

population growth and technological progress, i.e.

ḡt =
1

6

3∑
i=−3

gt−i,≥ ḡmint with gt = 100 ·
(

Yt
Yt−1

− 1

)
(5)

b) the acceleration of Yt is not lower than a given threshold, e.g.

∆gt ≥ ∆gmin
t

(6)

where ∆ refers to the standard di�erence operator.

All periods which are not identi�ed as acceleration or recessionary periods, are identi�ed as

periods of low economic growth.

2.2 Econometric Modeling

Analogously to Proaño (2017), we use an ordered probit model to estimate the three phases

of the business cycle. For this purpose the following discrete variable is de�ned as follows:

ct =


0, if the economy goes through an economic recession,

1, if the economy goes through a stagnative growth phase, or

2, if the economy experiences an accelerative economic phase at time t

(7)

with each of these outcomes being jointly determined by the non-parametric dating algorithm

described in the previous section.

As discussed in Proaño (2017), the conditional probabilities of observing each outcome of ct

on the basis of a particular set of regressors zit are given by

Pr
(
ct+h = 0|zit, βi

)
= Φ

(
0− zi′t β

i
)

(8)

Pr
(
ct+h = 1|zit, βi

)
= Φ

(
1− zi′t β

i
)
− Φ

(
0− zi′t β

i
)

(9)

Pr
(
ct+h = 2|zit, βi

)
= 1− Φ

(
2− zi′t β

i
)

(10)
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with Φ(· ) being the cumulative normal distribution function employed in ordered probit

models. As in Proaño (2017), the set of regressors zit is restricted by the real-time data

availability of the included variables and is parsimoniously determined through an automatic

General-to-Speci�c (G2S) indicator selection procedure based on the statistical signi�cance

of the individual coe�cients which reduces the dimensionality of the regression model.1

In the following forecasting exercise the ordered probit model is re-estimated in each period

using the most recent data (in a rolling window fashion) up to that period (under real-time

conditions), so that all h-step ahead forecasts are pseudo out-of-sample, i.e. they are based

only on values of the series up to the date on which the forecast is made. The h-step ahead

forecast will be computed by means of the direct forecast method, what implies the estimation

of a separate regression for each forecast horizon h.

In order to evaluate the forecasting performance of the ordered probit model concerning

particular business cycle phases, the three business cycle phases are estimated separately by

more standard dynamic probit regressions as in Proaño (2017). Accordingly, while the binary

recession series bt is set such that

bt =

0, if the economy experiences an expansion or a low growth phase at time t,

1, if the economy goes through a recessionary phase at time t
(11)

the binary acceleration variable at is de�ned as

at =

0, if the economy goes through a recessionary or low growth phase at time t,

1, if the economy experiences an accelerative economic phase at time t.
(12)

and the low growth variable lt is de�ned as

lt =

0, if the economy goes through a recessionary or an acceleration phase at time t,

1, if the economy experiences a low growth phase at time t.

(13)

These three binary series bt and at and lt are then estimated separately using exactly the

same set of explanatory variables as potential regressors, and indicator selection procedure.

1More speci�cally, the following algorithm is applied:

(i) Specify the model using the complete set of potential regressors.

(ii) Check whether any of the variables has a p-value larger than the signi�cance level α.

(iii) Omit the variable with the highest p-value, p∗, if p∗ > α and re-estimate the reduced model speci�cation.
If the p-value of none of the variables exceeds α, stop the algorithm. Otherwise repeat steps (ii) and
(iii).

The �nal model consists only of the variables for which the corresponding signi�cance level of the �nal model
ful�lls the condition p∗ ≤ α. In our work we set α = 0.05. Alternatively, we performed the complete analysis
using a speci�c-to-general (S2G) lag selection procedure which delivered quite robust results. All Gretl
(Cottrell and Lucchetti, 2017) codes required for the replication of our results are available upon request.
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2.3 Forecast Evaluation Criteria

We evaluate the forecasting performance of the ordered and the binary probit models at di�er-

ent forecast horizons using a variety of evaluation measures. Two standard overall measures of

probability forecast quality which have been recently applied e.g. by Lahiri and Wang (2013)

and Döpke et al. (2015) are Brier's Quadratic Probability Score (QPS) and the Log Probability

Score (LPS) over the spectrum of forecasts of interest (Diebold and Rudebusch, 1989). The

QPS is a measure of the mean squared error comparing the predicted probability of an event

with an indicator of the event, and is de�ned as

QPS = T−1
T∑
t=1

(
Ŷt − Yt

)2
(14)

where Ŷt refers to the ex-ante probability of an event at time t and Yt is a binary variable

taking on the value unity at period t when the event of interest occurs, otherwise zero. T is

the total number of forecasts available. The QPS takes a score of 0 in case of perfect accuracy

and 1 vice versa.

In contrast, the LPS is de�ned as

LPS = −T−1
T∑
t=1

[
(1− Yt) ln(1− Ŷt) + Yt ln(Ŷt)

]
(15)

and ranges from 0 to ∞, with the value of 0 meaning perfect forecasting accuracy. Note that

the LPS penalizes large errors more heavily than QPS.

An alternative approach to assess probability forecast performance is to focus on the hit rate

and the false alarm rate (Lahiri and Wang, 2013, 175). Consider the standard contingency

table (see Table 1) for binary outcomes of the realizations Y and its associated probability

forecast Ŷ where Y = 1 represents the actual occurrence of an event (otherwise 0) and Ŷ = 1

the correct prediction of the occurrence of this event (otherwise 0)

Table 1: Contingency table for binary outcomes

Predicted
0 1

Actual 0 TN FP
1 FN TP

where TN, FN, FP and TP denote the number of true negative, false negative, false positive

and true positive. The total number of the occurrence of actual events is P = TP + FN

while the total number of no events is given by N = TN + FP . The receiver-operating curve

(ROC) plots the true positive rate (TP/P ) against the false positive rate (FP/N) for each

value of Ŷ showing that both rates are functions of the cut-o� ω∗, also called the binary event
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classi�er. For a skillful forecast both the true positive rate, and the speci�city, one minus the

false positive rate, are expected to be high.

We compute two summarizing statistics of the ROC curve: (i) the AUROC, and (ii) the

Youden index. More speci�cally, the AUROC is the area under the ROC curve, and measures

the overall accuracy of the forecast model. A perfect classi�er has an AUROC of 1 while a

model with an AUROC of 0.5 predicts no better than a coin �ip. In the following, we will test

the null hypothesis of no di�erence between the AUROC statistics of two competing models,

H0 : AUROCi −AUROCj = 0, i 6= j, see DeLong et al. (1988).

However, the AUROC does not provide information on the optimal cut-o� ω∗. By contrast,

the Youden index is de�ned as the distance between the hit rate and the false alarm rate as

measured by the maximal vertical gap between the diagonal and the ROC curve. This distance

is just maximized at a cut-o� value which maximizes the fraction of correctly predicted binary

outcomes which are functions of ω∗. Thus, the Youden index not only provides a numerical

summary of the ROC curve, but it also measures the local skill of a speci�c cut-o�. This

statistics is computed as

Youden =
TP

TP + FP
+

TN

TN + FP
− 1 . (16)

A Youden index of zero corresponds to a random classi�er while a Youden of 1 refers to a

perfect classi�er.2

3 Empirical Analysis

3.1 Data Description

For the U.S. we use the monthly FRED-MD dataset as provided by McCracken and Ng (2015)

which comprises monthly data between 1977m1 and 2016m9 (480 observations). The Japanese

macroeconomic and �nancial data are obtained from the Bank of Japan and Datastream. The

vector of exogenous regressors for the U.S. includes growth of real manufacturing new orders

for durable goods, growth of industrial production, S&P500 real stock market returns, the

10-year Treasury rate minus the 3-month Treasury bill rate, the 3-month commercial paper

rate minus the Federal funds rate, growth of real oil prices, and the consumer sentiment index.

Japanese monthly data cover the period between 1989m1 and 2015m12 (324 observations). We

consider growth of industrial production, growth of real domestic machinery orders, growth

of foreign machinery orders, growth of real retail trade, Nikkei real stock market returns, the

di�erence between the 10-year government bond yield and the 3-month money market rate,

growth of real oil prices, the business sentiment index, and growth of un�lled job vacancies.

For details on the data and eventual transformations we refer to the Data Appendix.

2For computation of the ROC curves and related statistics we use the Gretl package roc (vers. 1.02)
provided by Peter M. Summers.

7



For the parameters ḡmint and ∆gmin
t

of the dating algorithm proposed by Proaño (2017) we

use the following values for the U.S. and Japan, respectively, as described in Table 2.

Table 2: Overview of parameter settings for the construction of the ARNG indicator.

Parameter USA Japan

ḡmint 0.003 0.002

∆gmin
t

-0.015 -0.015

The value ḡmint = 0.003 (implying an annual growth of potential output of about (1+0.003)12−
1 ≈ 3.6%) has its roots in the classical Okun's law relationship. For Japan we set this

parameter a bit lower to ḡmint = 0.002 as a consequence of lower productivity growth during

the last decades. For comparison, a value of ḡmint = 0.0025 for Germany was chosen in Proaño

(2017). By contrast, the value for ∆gmin
t

is data-driven and is chosen as to avoid a too volatile

switching between the acceleration and the low growth periods (in Proaño, 2017 the value of

0.001 was chosen for Germany).

Figure 1 depicts the underlying industrial production series and the corresponding business

cycle classi�cation using the ARNG indicator for both the U.S. and Japan, respectively. For

the U.S. we additionally plot the NBER recession dates (which are based on real GDP growth

instead), while for Japan we add estimated OECD recession dates (also based on real GDP

growth). Overall, in both countries the ARNG algorithm delivers a plausible chronology of

the business cycle. On the one hand, the recessionary periods are in line with the NBER

and OECD recession dating for the U.S. and Japan, respectively. Further, the di�erentiation

between true economic accelerations and low growth periods seems particularly meaningful

in the U.S. in some periods after the 2007 crisis, as well as in Japan in numerous periods over

the whole sample.
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Figure 1: Dating of economic phases as de�ned in Table 2. ARNG dating based on U.S. and
Japanese industrial production index (two-month moving average). For the U.S. the NBER
dating is based on growth of real GDP, and for Japan the recession dates are based on OECD
estimates using growth of real GDP as the reference series.
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3.2 Estimation Results

In this section we discuss the out-of-sample probability forecasts of both the dynamic ordered

probit model as well as dynamic binary probit models using the ARNG indicator.

For the U.S., the complete sample ranges between 1979m1 and 2016m9, and the initial training

set uses 84 observations from 1979m1 to 1985m12 to determine the optimal set of features

(regressors) before computing the h-step-ahead direct forecasts. Next, the beginning and end

of the training set are extended by one additional observation such it ranges from 1979m2

to 1986m1. The last training set is determined before computing the h-multi-step direct

forecasts. The number of forecast sequences is 369. For Japan the sample ranges from

1990m4 to 2015m9, and the initial training set uses 84 observations from 1991m6 to 1998m5

yielding 209 forecasting sequences.3

As previously mentioned, in each of the following periods the ordered and the binary probit

models are parsimoniously re-speci�ed through an automatic General-to-Speci�c (G2S) indi-

cator selection procedure starting with a maximum of seven lags of each variable. This implies

that the set of regressors in the predicting models may vary signi�cantly over time, as well

as the recurrently newly estimated individual coe�cients. Figure 2 illustrates the normalized

(by their respective full-sample median value) point coe�cient estimates from the ordered

probit model using a rolling-window estimation method.
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Figure 2: Rolling-window (relative) coe�cient estimates after automatic indicator-selection
from the dynamic ordered probit regression based on the ARNG indicator. Reported results
are based on the 1-month-ahead direct forecasting regressions.

As it can be clearly observed in Figure 2, there is a signi�cant variability concerning the value

of the estimated parameters and of the actual variables over the di�erent vintages in both the

United States and Japan, what highlights the meaningfulness of re-estimating the regression

model in every period when new information becomes available.

Interestingly, for the U.S. we observe that during the three low-growth/recession episodes

3For both the U.S. and Japan the results are robust against the use of a rolling-window of width 96 monthly
observations.
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namely between the late 1980 and beginning of the 1990s, between 1999 and 2000, and in

2008 only a sub-set of relevant indicators were selected. While lags of the ARNG indicator

and the spread between the 10-year Treasury rate minus the 3-month Treasury bill rate

are frequently selected throughout the whole sample, we observe the relevance of growth of

industrial production and consumer sentiments in the late 1980s while the commercial paper

spread, growth of real stock market returns and also consumer sentiments are frequently

selected during the Great Financial Crisis (GFC) period in 2008. For Japan, we �nd that for

most periods all features (but not all lags) are selected by the G2S algorithm. However, during

the GFC period, we �nd that lags of the ARNG indicator, growth of industrial production,

real stock market returns and business sentiments are frequently among the selected features.

Figure 3 illustrates the out-of-sample one-month ahead probability forecasts for the period

between 2007m1 and 2010m12 for the three business cycle phases determined by the dating

algorithm proposed by Proaño (2017). Panel A shows how timely the ordered probit model

is able to identify both the beginning as well as end of the recession period in the U.S. and

Japan.

For instance, even though both models miss the exact starting date of the recession in 2008,

the ordered probit model signals 1-2 months earlier the recession compared to the binary

probit model for both the U.S. and Japan. Also the binary probit model wrongly signals with

high probability a recession in autumn 2009 and May/June 2010 in the U.S., and in May

2009 and January 2010 in Japan. For the U.S. we also observe that the binary probit model

wrongly predicts low growth periods in May 2008 as well as January 2010, and misses the

low growth period in summer 2009. Lastly, the ordered probit model identi�es the starting of

the acceleration phase in autumn 2009 1-2 months earlier in the U.S., and also provides more

stable probability forecasts during this acceleration period for both Japan and the U.S.

3.2.1 Recession Probability Forecast Evaluation

We evaluate �rst the recession prediction performance of the binary as well as the ordered

probit models. Figure 4 illustrates both the LPS and QPS measures for both models for (i)

the complete forecasting sample, and (ii) for a forecasting sample starting in 2007m1 to focus

on the forecasting performance of both models since the GFC period.

For the whole forecasting sample we �nd for both the U.S. and Japan that the ordered probit

model yields more accurate forecasts compared to the binary probit model according to both

the QPS and LPS criteria. More speci�cally, for the U.S. the LPS measure of the binary

probit model is about three times higher compared to the ordered probit model for the �rst

three horizons and even 5 times higher for the 6-month horizon. For Japan, we report at the

1-month horizon a LPS of 0.19 for the ordered probit model compared to a LPS of 0.49 for

the binary probit model. This performance gap remains for all forecast horizons. For the

QPS measure qualitatively similar observations arise. For the forecasting subsample starting
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A: Recession Probabilities B: Stagnation Probabilities C: Acceleration Probabilities
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Figure 3: Out-of-sample 1-month ahead state-probabilities during the Great Financial Crisis.
The gray shaded area displays the respective business cycle state as identi�ed by the ARNG
dating algorithm. The optimal cut-o� value (ω∗) is the value which maximizes the fraction
of correctly predicted outcomes of the dependent variable.

in 2007m1, the ordered probit model still outperforms the binary probit alternative for both

forecast accuracy criteria and each horizon. However, at least for the U.S. we observe that

the advantage in terms of forecast accuracy of the ordered probit model is somewhat lower

now.

Apart from the QPS and LPS measure, we evaluate the recession probability forecasts for

both countries using the AUROC statistics and the Youden index. The results for the full

sample and the subsample since 2007m1 are reported in Figure 5.

The results indicate that the ordered probit model is superior to the binary probit model for

both the U.S. and Japan. Based on the complete forecasting sample for the U.S., the ordered

probit yields an AUROC ranging, dependent on the forecast horizon, between 0.85 and 0.89.

In the binary probit case, this statistics is about 0.84 for the �rst three horizons but falls

substantially to 0.65 at the 6-month horizon which con�rms its rather poor forecasting skills.

These �ndings are also con�rmed by the Youden index. Interestingly, when considering only

forecasts since 2007, we observe that both models yield slightly higher AUROC and Youden

statistics throughout all forecast horizons. However, still the ordered probit model dominates.

For Japan, based on all forecasts available, we observe that the ordered probit model yields at

each horizon an AUROC statistics of about 0.96 while the binary probit model reaches values

ranging between 0.84 and 0.86. Similarly, we �nd that the Youden index of the ordered probit

model outperforms the binary probit alternative at each horizon while that performance gap

even increases the longer the forecast horizon gets. Interestingly, for the sample since 2007m1

we observe a slight improvement in forecasting skills for the binary probit model according
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Panel A: Log Probability Score
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Panel B: Quadratic Probability Score
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Figure 4: Recession probability forecasts evaluation criteria. 'Binary' and 'Ordered' refer to
the forecasts evaluation criteria based on the binary probit and ordered probit models using all
observations available, respectively. The abbreviation 'GFC' denotes the respective statistics
only based on observations since 2007m1.

to both the AUROC and the Youden statistics while the Youden index of the ordered probit

model deteriorates. However, the ordered probit model still dominates throughout all forecast

horizons.

Table 3 reports the results of the test on equal AUROC statistics between the binary probit

model and the ordered probit model for each forecast horizon. In the following, we set a

signi�cance level of 5% for rejecting the null hypothesis.

For the U.S. we �nd evidence that, using all forecasts available, the ordered probit model

signi�cantly outperforms the binary probit alternative at all forecast horizons as the null

hypotheses can be rejected at the 1% level. Considering only the period since 2007m1, we can

reject the null at least for forecast horizons longer than three months. These results underline

that the ordered probit case yields signi�cantly better probability forecast results compared to

the binary probit case in the U.S. Very similar results are obtained for Japan, as, independent

of the chosen sample, the null can be rejected for each forecast horizon.
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Panel A: Full Sample
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Panel B: Since 2007M1
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Figure 5: AUROC statistics and Youden index of out-of-sample recession probability forecasts
based on the ARNG indicator.

Table 3: Test on Area Under the ROC -equality of out-of sample recession probability forecasts
between the ordered-probit and the binary-probit model by horizon.

Test (USA) p-value (USA) Test (JAP) p-value (JAP)

(A) Full sample
h=1 17.258 0.000 23.274 0.000
h=2 17.217 0.000 23.262 0.000
h=3 14.873 0.000 17.873 0.000
h=4 31.411 0.000 17.206 0.000
h=5 76.935 0.000 6.983 0.008
h=6 81.077 0.000 8.238 0.004

(B) Since 2007m1 only
h=1 2.822 0.093 8.492 0.004
h=2 1.926 0.165 11.270 0.001
h=3 2.588 0.108 9.578 0.002
h=4 4.391 0.036 9.896 0.002
h=5 6.430 0.011 5.509 0.019
h=6 4.909 0.027 5.958 0.015

3.2.2 Acceleration Probability Forecast Evaluation

Analogously to Figure 5, Figure 6 shows the AUROC and Youden index values for the pre-

diction of acceleration periods through the ordered probit and a corresponding binary probit
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model. Table 6 in the Appendix summarizes the corresponding test on equal AUROC statis-

tics between the binary probit model and the ordered probit model for each horizon.
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Panel B: Since 2007M1
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Figure 6: AUROC statistics and Youden index of out-of-sample acceleration probability fore-
casts based on the ARNG indicator.

For the United States, our results indicate that the ordered probit seems to have a superior

forecasting performance than a binary probit model over all horizons and in both forecasting

samples applied on an acceleration binary series concerning the AUROC and Youden index

values. However, the forecasting performance of both prediction models is not statistically

di�erent at all forecasting horizons when the whole forecasting sample is considered. By

contrast, the opposite holds when the post-crisis forecasting subsample (when the low growth

phases are relatively more relevant) is considered. This con�rms the superiority of the ordered

probit model for predicting acceleration phases since 2007. Similarly, for Japan, where low

growth phases are more frequent and thus a di�erentiated treatment is more meaningful, the

results of the test for forecasting equivalency indicate that the forecasts of the ordered probit

model are statistically superior than those of a binary probit model. This holds for both

samples tested.
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3.2.3 Low Growth Probability Forecast Evaluation

Analogously, Figure 7 illustrates the AUROC and Youden index values for the prediction

of low growth periods by the ordered probit and a binary probit model for that particular

regime. The corresponding test results for forecasting equivalency are summarized in Table 7

in the Appendix.
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Panel B: Since 2007M1
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Figure 7: AUROC statistics and Youden index of out-of-sample low growth probability fore-
casts based on the ARNG indicator.

As in the previous case, the AUROC and the Youden index values for the U.S. indicate that

the forecasting performance of the ordered probit model is superior to that of the binary

probit for nearly all forecast horizon in both forecast evaluation periods. However, the test

results in Table 7 indicate that only for the one-month ahead forecast horizon in the post-crisis

evaluation sample the ordered probit model's performance is statistically di�erent, in terms of

the AUROC statistics, than that of the binary model (rejection at the 10% level). We obtain

a similar picture for Japan, where the ordered probit model's forecasting performance is only

statistically superior than that of the binary model at certain forecast horizons. Nevertheless,

in terms of the Youden index the ordered probit model dominates throughout all horizons.
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3.2.4 Overall probability forecast evaluation

In the previous subsection we evaluated the recession, acceleration and low growth probability

performance separately for both the binary and ordered probit model, respectively. In this

section, we go a step further and assess the skills of each model type to forecast jointly

recession periods, low growth periods as well as acceleration events.

To do so, we compute both the QPS and LPS statistics for the recession probability binary

probit model (as already discussed before), the low growth probability binary probit model and

the acceleration probability binary probit model. Using these three QPS and LPS statistics,

we compute the mean LPS and QPS statistics across all three states. The same is done for the

ordered probit model. Hence, we obtain a joint forecast accuracy measure for the binary and

the ordered probit model, respectively. Figure 8 reports the joint measures using all forecasts

available.
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Panel B: Log Probability Score
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Figure 8: Joint probability forecast evaluation of recessionary, low growth and acceleration

periods using all forecasts available.

For the U.S. we see that the ordered probit case yields an QPS of about 0.11 compared to

an average of 0.15 for the binary probit case across all six forecast horizons. Interestingly, in

terms of the LPS measure both models perform similarly for the �rst three forecast horizons

before the ordered probit model dominates at longer horizons. This implies that the binary

probit model su�ers from some large forecast errors at longer horizons which the LPS penalizes
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more heavily compared to the QPS. In the Japanese case we observe that the ordered probit

model clearly outperforms the binary probit model at all horizons according to both criteria.

The performance advantage of the ordered probit model is at least about 40% to 50% for both

the QPS and the LPS measure, respectively.

In Figure 9 we illustrate the same statistics for the forecasting sample since 2007m1. While

the results remain unchanged for the Japanese case, we �nd even stronger hints for the U.S.

that the ordered probit model dominates the binary probit model stressing the good joint

forecast accuracy performance of the ordered binary model since 2007.
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Panel B: Log Probability Score
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Figure 9: Joint probability forecast evaluation of recessionary, low growth and acceleration

periods since 2007m1.

Next, we also compute a joint measure for the AUROC and Youden statistics in the similar

vein as we have done before for the LPS and QPS measures. The results are depicted in

Figure 10.

For the U.S., using all forecasts available, we �nd that the ordered probit model yields higher

joint AUROC as well as joint Youden statistics throughout all forecast horizons con�rming

the previous �ndings. For instance, at the 1-(6-)month horizon, the ordered probit model

yields an AUROC of 0.9 (0.94) compared to an AUROC of 0.84 (0.79) obtained by the binary

probit model. Interestingly, when considering forecasts since 2007m1, we observe that both

models yield slightly higher joint AUROC statistics even though their relative performance gap
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remains stable throughout all horizons. However, the binary probit model shows substantial

weaknesses in classi�cation skills according to the joint Youden index for forecasts longer than

2-months ahead.

Using all available forecasts for Japan, we can con�rm the dominance of the ordered probit

model at each forecast horizon. For instance, while the ordered probit models yields a joint

AUROC statistics of about 0.95 throughout all horizons, the binary probit yields only a joint

AUROC of 0.84. The performance gap is even larger for the joint Youden index (0.75 against

0.53) irrespective of horizons considered. The results remain unchanged when considering

only forecasts since 2007. In total, the results indicate for both the U.S. and Japan that the

ordered probit model framework works remarkably well relative to the binary probit case in

terms of probability forecast accuracy as well as classi�cation.
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Panel B: Since 2007M1
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Figure 10: Joint probability forecast evaluation by means of AUROC and Youden statistics.

4 Concluding Remarks

How many are enough? So far, the great majority literature on business cycle forecasting

has used the dichotomous characterization of the business cycle consisting in recessionary and

expansionary phases stemming from the seminal work by Burns and Mitchell (1946). However,

many countries around the world have experienced pronounced periods of stagnant or low

economic growth coupled with high and persistent unemployment rates and slow technological
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progress which can barely be considered as expansionary phases in recent times. Against this

background, new research has explored more di�erentiated classi�cations of the business cycle

phenomenon.

In this paper we applied the three-phase business cycle classi�cation by Proaño (2017) �

accelerations, low growth periods and recessions � and used his proposed ordered-probit ap-

proach to forecast these economic phases for two major industrialized economies: the U.S.

and Japan. Using state-of-the-art forecast evaluation measures we assessed the forecasting

power of the ordered probit model at various forecast horizons. Interestingly, and corrobo-

rating the results by Nalewaik (2011) for the U.S. and Proaño (2017) concerning Germany, a

more di�erentiated characterization of the business cycle phenomenon in the U.S. and Japan

and the subsequent prediction of multiple business cycle phases in a consistent framework �

where the three estimated state probabilities add up to one in each period � turned to be

superior in many cases to the performance of binary models aimed at forecasting each of the

three phases individually.

Summing up, our results suggest that the approach pursued in this paper is a promising direc-

tion for future research aimed at a better characterization of the business cycle phenomenon.
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A Appendix

Table 4: U.S. macroeconomic and �nancial indicators

Series FRED-MD +
Transformation

Description Vintage Data Publication
Lag

ipidx-d 100×
(

INDPROt
INDPROt−1

− 1
)

Growth of industrial production yes 2
months

g-order 100×

(
AMDMNOxt
CPIAUCSLt

AMDMNOxt−1
CPIAUCSLt−1

− 1

)
Growth of real manufact. new
orders of durable goods

yes 2
months

g-sp500 100×

(
SP500t

CPIAUCSLt
SP500t−1

CPIAUCSLt−1

− 1

)
S&P 500 real stock market return no 0

months
yc10y GS10− TB3MS 10-year Treasury rate minus

3-month Treasury bill
no 0

months
comspread COMPAPFFx 3-Month Commercial Paper Minus

Federal funds rate
no 0

months

g-poil 100×

(
OILPRICEt
CPIAUCSLt

OILPRICEt−1
CPIAUCSLt−1

− 1

)
Real oil price growth no 0

months
csenti UMCSENTx Consumer sentiment index no 0

months

Sources: All series are obtained from the FRED-MD database McCracken and Ng (2015). All abbreviations used
are in line with the FRED-MD database.

Table 5: Japanese macroeconomic and �nancial indicators

Series Transformation Description Vintage Data Publication
Lag

ipidx-d 100×
(

INDPROt
INDPROt−1

− 1
)

Growth of industrial production yes 1
months

g-dorder 100×

(
ordert

Pt
ordert−1

Pt−1

− 1

)
Growth of real domestic machinery
orders (de�ated by producer price
index)

yes 1
months

g-forder 100×

(
fordert

Pt
fordert−1

Pt−1

− 1

)
Growth of real foreign machinery
orders (de�ated by producer price
index)

yes 1
months

g-retail 100×

(
retailt

Pt
retailt−1

Pt−1

− 1

)
Growth of real retail trade
(volume) (de�ated by producer
price index)

yes 1
months

g-nikkei 100×

(
nikkeit

Pt
nikkeit−1

Pt−1

− 1

)
Nikkei real stock market return
(de�ated by producer price index)

no 0
months

yc10y 10-year govern. bond yield minus
3-month money market rate

no 0
months

climate Business sentiment index no 0
months

poil_dln 100×

(
OILPRICEt
CPIAUCSLt

OILPRICEt−1
CPIAUCSLt−1

− 1

)
Real oil price growth no 0

months
g-jvac Growth of un�lled vacancies yes 1

months

Sources: All series are obtained either from the Bank of Japan or from Datastream
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Table 6: Test on Area Under the ROC -equality of out-of-sample acceleration probability
forecasts between the ordered-probit and the binary-probit model by horizon.

Test(USA) p-value(USA) Test(JAP) p-value(JAP)
(A) Full sample
h=1 0.117 0.732 15.244 0.000
h=2 0.131 0.718 27.035 0.000
h=3 1.052 0.305 28.072 0.000
h=4 0.797 0.372 27.994 0.000
h=5 0.457 0.499 26.376 0.000
h=6 0.364 0.546 15.953 0.000
(B) Since 2007m1 only
h=1 14.301 0.000 9.509 0.002
h=2 19.866 0.000 17.083 0.000
h=3 19.917 0.000 14.666 0.000
h=4 15.935 0.000 12.167 0.000
h=5 12.673 0.000 12.107 0.001
h=6 17.364 0.000 7.209 0.007

Table 7: Test on Area Under the ROC -equality of out-of-sample low growth probability fore-
casts between the ordered-probit and the binary-probit model by horizon.

Test(USA) p-value(USA) Test(JAP) p-value(JAP)
(A) Full sample
h=1 2.264 0.132 3.497 0.061
h=2 0.724 0.395 12.397 0.000
h=3 0.965 0.326 6.851 0.009
h=4 0.000 0.987 2.274 0.132
h=5 0.201 0.654 0.612 0.434
h=6 0.529 0.467 1.025 0.311
(B) Since 2007m1 only
h=1 3.026 0.082 1.627 0.202
h=2 0.326 0.568 6.270 0.012
h=3 0.689 0.406 8.059 0.005
h=4 0.739 0.390 5.627 0.018
h=5 0.637 0.425 0.048 0.827
h=6 0.595 0.441 0.011 0.918
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