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1. Introduction

Despite the individualistic orientation of much economic theory, it is an undeniable fact that

humans are social beings and that human interaction is a central feature of social reality.

This interaction can be more or less superficial. On one hand, individuals can (in principle)

engage in collective activities such as production, or interact with one another in processes

such as exchange, without this affecting their ‘internal structure’ (their beliefs, objectives,

preferences, aspirations, etc.). This is the basis on which mainstream economics conven-

tionally treats social interaction. On the other hand, exchanges of information and opinions

may well shape goals, ambitions and the like, and so the internal structure of individuals

itself may depend on social interaction. The resulting ‘socialization’ or ‘acculturation’ is

frequently emphasized in social sciences other than economics. Whether more or less super-

ficial, however, an important feature of social interaction is that it is structured by social

networks – social structures made up of agents (whether individuals or organizations) who

are linked to one another by dyadic ties that represent some form of inter-personal (or inter-

organizational) ‘connection’, such as friendship, a trade relationship, or a shared interest in

some particular outcome or objective.

Networks so-defined matter because of the possibility that they affect behaviour and so

have a bearing on observed economic and social outcomes (Jackson, 2014; Jackson et al.,

2017). Structural features of networks, such as their density (the average number of connec-

tions to other agents of each agent in the network, or the degree of each agent), homophily

(the extent to which agents link to other agents who are similar to themselves), and cluster-

ing (the extent to which the network neighbours to which any agent is linked are, themselves,

linked to one another) can affect, for example, the diffusion of information and the extent to

which a society displays patterns of segregation. The potential significance of network struc-

ture extends to its effects on macroeconomic outcomes. For example, Acemoglu et al. (2012)
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argue that aggregate fluctuations in output can be traced to the structure of the networks

that link individual firms. One important feature of the analysis in Acemoglu et al. (2012),

however, is that it is informed by real business cycle (RBC) analysis and is therefore focused

exclusively on supply-side linkages between firms that belong to production networks. In

this paper, we explore the network origins of aggregate fluctuations from a demand-side per-

spective, building on the model of Gouri Suresh and Setterfield (2015), in which individual

firms invest based on their ‘animal spirits’ or state of long-run expectations (SOLE) that are

affected, in part, by the experience of other firms to whose fortunes they pay attention.

In the model developed in this paper, a network edge or link indicates two firms that

pay attention to one other when computing their SOLE.1 Since the link does not represent

a physical flow, two firms could be linked for any of several different reasons: they could

be headquartered in the same location; they could be rivals in the same sector; they could

share some of the same members on their boards of directors; their CEOs could be connected

socially; and/or they could be linked through input-output connections, inter alia. The rele-

vant network features in our model are therefore those that determine patterns of information

flows and information aggregation. While aggregating information, an individual firm will

recognize that not all of its connections are equally important — some connections are likely

to be more informative because these connections themselves either have more connections or

are connected to other more-informative sources. Thus, the importance of a particular con-

nection depends on the importance of that connection’s connections, leading to a recursive

definition of importance, much like the original formulation of the ‘beauty-contest’ setting in

Keynes (1936). As will become clear, the upshot of these considerations is that in our model,

the centrality of a linked network neighbour is the feature of network architecture that is of

particular importance for our analysis of the network origins of aggregate fluctuations.

1As will become clear, our analysis is based on undirected networks, so any pair of linked firms influence
one another.
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The remainder of the paper is organized as follows. In section 2, we outline how concern

with the network origins of aggregate fluctuations has arisen from concern with the ‘granular’

origins of aggregate fluctuations as expressed by Gabaix (2011), and how it also reflects the

basic schism in macroeconomics between supply-side and demand-side approaches to the

study of major macroeconomic pathologies. In section 3, we summarize the structure of the

original model developed by Gouri Suresh and Setterfield (2015) on which we build, while

in section 4, we extend this model to incorporate network connections between individual

firms. Section 5 presents and analyzes the results of simulation experiments based on the

model developed in the preceding section. Finally, section 6 concludes.

2. From the granular origins to the network origins of

aggregate fluctuations

A common trope in macroeconomics is that in any economy with a sufficiently large number

of firms, idiosyncratic firm-level disturbances will ‘wash out’ having no effect (or at most,

an effect so small as to be negligible) on aggregate outcomes (Lucas, 1977). Following

Gabaix (2011), consider a population of n independent firms, each of which is subject to an

idiosyncratic shock ε ∼ N(0, 1). Define the growth rate of each firm as:

∆yjt
yjt−1

= σεjt

where yj is the output of the jth firm and σ is the standard deviation of individual firm

output (assumed common to all firms). Aggregate output (y) therefore grows at the rate:

gt =
∆yt
yt−1

=

∑n
j=1 ∆yjt

yt−1

=
n∑
j=1

σρjt−1εjt (1)

where ρjt−1 =
yjt−1

yt−1
is the jth firm’s share of aggregate output.
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Now consider the standard deviation of aggregate output growth, σg. Drawing on the

result in (1), this can be written as:

σg =

[
σ2

n∑
j=1

(ρjt−1)2Var(εjt)

]1/2

= σ

[
n∑
j=1

(ρjt−1)2

]1/2

= σh (2)

since Var(εjt) = 1 by hypothesis and where h =
[∑n

j=1 (ρjt−1)2
]1/2

is the square root of the

economy-wide Herfindahl index.

Suppose now that all firms are of identical size, so that yjt−1 = yt−1

n
, ∀j. Then:

ρjt−1 =
yt−1

n

yt−1

=
1

n
, ∀j ;

so that:

h =

[
n

(
1

n

)2
]1/2

=
1√
n
.

Substituting this last expression for h into equation 2 yields:

σg =
σ√
n

(3)

In equation (3), the term 1/
√
n acts as a scaling factor, relating the volatility common to all

individual firms (σ) to the volatility of aggregate output growth (σg). Clearly, the effect of

σ on σg diminishes with n and will ultimately become negligible for sufficiently large n.

However, this argument overlooks properties of the ‘micro-structure’ of an economy that

can propagate idiosyncratic shocks to individual firms into non-negligible effects on aggregate

outcomes (Stiglitz and Gallegati, 2011, p.8). It assumes that firms are both independent

(firms are treated as islands and are subject to idiosyncratic shocks that are i.i.d.) and

identical. This second feature is reflected in the assumptions that σj = σ and ρj = ρ ,∀j

– the latter implying that the size distribution of firms is uniform, which distribution is
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platykurtic (thin tailed). But Gabaix (2011) shows that idiosyncratic shocks do not ‘cancel

out’ if the size distribution of firms is leptokurtic (fat tailed). In particular, if the size

distribution of firms conforms to a power law – as has long been suggested by empirical

evidence (Steindl, 1965; Ijiri and Simon, 1977; Axtell, 2001) – then shocks to individual

firm output will affect aggregate output by an order of magnitude that is much larger than

1/
√
n.2 Intuitively, this is because of the disproportionate contribution to aggregate output

of a small number of very large firms. The result is what Gabaix (2011) refers to as the

‘granular origins of aggregate fluctuations’.

One problem with the approach taken by Gabaix (2011) is that it focuses exclusively

on ‘supply granularity’ (Dosi et al., 2019, p.69). According to Dosi et al. (2019), the basic

granularity result in Gabaix (2011) is beyond dispute, but the nature of the granular shock

to which he appeals is not. Hence Gabaix (2011) focuses on granular productivity shocks to

individual firms in an explicit effort to provide a microfoundation for real business cycle the-

ory, in which aggregate supply shocks resulting from the uneven pace of technological change

are understood to explain the business cycle. Dosi et al. (2019) show that Gabaix’s results

are sensitive to his treatment of the data and amount to assuming that shocks themselves are

not leptokurtic, contrary to the empirical evidence. When this assumption is dropped, gran-

ular productivity shocks lose importance – but demand granularity (proxied by investment

growth) is important as a source of aggregate fluctuations. Building on this insight and us-

ing the ‘Schumpeter meeting Keynes’ agent-based model pioneered by Dosi et al. (2010), the

authors perfom regressions on simulated data that demonstrate the statistical significance

of demand granularity (local investment growth shocks) and the statistical insignificance of

supply granularity (local productivity shocks) as sources of aggregate fluctuations. They

conclude that the granular origins of aggregate fluctuations are fundamentally Keynesian in

nature.

2The scaling factor in the case of a power law distribution of firms is 1/ lnn.
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Meanwhile – and equally congruent with the basic insight of Stiglitz and Gallegati (2011)

regarding the importance of the economy’s micro-structure – Acemoglu et al. (2012, p.1978)

argue that the interconnectedness of firms (rather than features of their size distribution)

can ensure that idiosyncratic shocks affect aggregate outcomes. Allowing for such intercon-

nectedness involves departing from the assumption, used in the derivation of equation (3),

that firms are independent. Hence Acemoglu et al. (2012) look beyond the granular ori-

gins of aggregate fluctuations into the network origins of aggregate fluctuations. Appeal to

network theory involves explicitly modeling the connections between firms and thus moving

away from the assumption that they can satisfactorily be treated as ‘islands’. In particular,

Acemoglu et al. (2012) show that the size of aggregate fluctuations is increasing in the asym-

metry of network connections (differences in the degree of individual firms) rather than the

sparseness of a network (low average degree), and in the extent of second-order connectivity

(that is, the degree of the neighbouring firms to which each individual firms is linked). This

second result they associate with the capacity of a network to propagate cascades.3

However, and like Gabaix (2011), Acemoglu et al. (2012) adopt a supply-side perspective

rooted in RBC theory. They study networks rooted in input-output connections between

firms, and once again neglect the independent role of demand in contributing to aggregate

fluctuations. In this paper, inspired by Dosi et al. (2019) and their reformulation of the

‘granular origins’ story from a demand-side perspective, we explore the network origins of

aggregate fluctuations in a demand-led growth model. The approach taken involves building

on the model of Gouri Suresh and Setterfield (2015), in which the growth of investment

at firm-level depends (in part) on the revision of ‘animal spirits’ or the ‘state of long-run

expectations’ (SOLE), which is (in turn) influenced by firms’ observations of both their own

recent performance, and that of others. Gouri Suresh and Setterfield (2015) furnish what is

3Cascades arise in networks when behaviour is sequential, and the observed behaviour of others holds
sway over the behaviour of any individual decision maker regardless of any private information that the
latter possesses.
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essentially a ‘complete graph’ model of firm interaction.4 In what follows, we depart from this

set-up so as to consider a range of incomplete graphs arising from different network structures.

Simulations of our model are then used to generate data, the analysis of which allows us to

draw conclusions about the influence of network structure on aggregate fluctuations.

3. The basic model

The behaviour of the jth firm is represented as follows:

gijt = αjt + grr
e
jt + guu

e
jt (4)

gsjt = sπrjt (5)

rjt =
πujt
v

(6)

gsjt = gijt (7)

rejt = rjt−1 (8)

uejt = ujt−1 (9)

∆αjt = α([ujt−1 − uejt−1],∆ūt−1) (10)

where gi and gs are the actual rate of accumulation and the rate of accumulation consistent

with investment being equal to savings, respectively, α denotes the SOLE, r is the rate

of profits, u is the rate of capacity utilization, π is the profit share of income, v is the

(fixed) full capacity capital-output ratio, and e superscripts denote the expected values

4In graph theory, a complete graph is one in which every pair of distinct vertices (the ‘nodes’ or agents
in a network) is connected by a unique edge, and these connections or edges are undirected. This means
that the connections ‘run both ways’. For example, an undirected connection between two parties might
involve each party sharing information with the other. A directed connection, on the other hand, would be
asymmetric – only one of the two parties would receive information form the other.

8



of variables. This system of equations essentially describes an agent-based version of an

otherwise-standard Kaleckian growth model. The only significant modification is that the

SOLE of each firm is endogenous: both to its own past performance (following Kregel (1976),

the jth firm’s SOLE responds positively or negatively to disappointment of its own short-term

expectations); and to that of its ‘linked network neighbours’ (∆ū representing the change in

the average rate of capacity utilization of the other firms to which firm j pays attention).

Note that apart from their interaction via revision of the SOLE, the model does little to

relax the treatment of firms as ‘islands’ that was intrinsic to the derivation of equation (3).

Although agent interaction is a signal feature of agent-based modelling, this parsimony is

deliberate: following Dibble (2006, p.1538), it is designed to facilitate understanding and

interpretation of the model’s workings and its simulated output. For this reason, the model

is best thought of as an ‘aggregate structural model with agent-based features’ rather than

a traditional agent-based model (ABM).

Upon substitution, the model can be expressed in terms of the recursive interaction of

the three-equation system:

gijt = αjt +
(
gu +

grπ

v

)
ujt−1 (11)

ujt =
v

sππ
gijt (12)

∆αjt = α(∆ujt−1,∆ūt−1) (13)

where:

∆ujt−1 = ujt−1 − ujt−2 = ujt−1 − uejt−1

Given the rate of change of firm j’s own rate of capacity utilization in the previous period,

together with the rate of change of the average utilization rate among its linked network
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neighbours in the previous period, the change in the SOLE (from the previous period to the

current period) is determined in equation (13). The current SOLE and the rate of capacity

utilization from the previous period are then used to determine the current rate of growth

(equation (11)), which then determines the current rate of capacity utilization (in equation

(12)). The model then moves forward one period, and the process just described begins

again. Note that because u is a bounded variable, it follows from equation (12) that there

exists a maximum rate of growth gimax = sππ
v

for uj = 1.5 We therefore add to the system

(11) – (13) the equation:

gajt = min
(
gijt,

sππ

v

)
and replace gijt with gajt in equation (12) for purposes of simulation, in order to ensure that

the model always remains consistent with its logical bounds.

Table 1 details the setting and revision of the SOLE summarized by the implicit function

in (13). The first row rules out negative values of the SOLE;6 the second row sets αj to

the value that satisfies gijt = gimax whenever gajt = gimax. The remaining rows describe how

the SOLE is otherwise revised from period to period. κ denotes the ‘degree of isolation’

(the extent to which firm j pays less or more attention to the outcomes experienced by its

linked network neighbours when revsiing its SOLE), c is a constant conventional threshold

value for determining when recent economic performance should be considered particularly

encouraging or discouraging, ε is a constant representing the normal degree to which the

SOLE is revised between any two periods, and φ denotes the number of periods over which

firms conventionally assess their ability to expand in a manner that involves raising capacity

5Consistent with the conditions for the existence and stability of a positive steady-state rate of growth
in the Kaleckian growth model, we set αjt ≥ 0 ,∀t. Note, then, that even with ujt−1 = 0, this ensures that
gijt ≥ 0 in equation (11). This is consistent with the logical minimum value of the growth rate that can be
derived from equation (12) when uj = 0.

6Recall that, as previously noted, a non-negative value of α is one of the conditions for the existence and
stability of a positive steady-state rate of growth in the Kaleckian growth model.
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utilization towards its maximum possible value.

Table 1: Setting and revising the state of long run expectations (SOLE).

Criteria Effect on SOLE

αjt < 0 αjt = 0

gajt = sππ
v

αjt = α′jt = sππ
v
−
(
gu + grπ

v

)
1− ujt−1 < φ∆ujt−1 ∆αjt = −ε

κ∆ujt−1 + (1− κ)∆ūt−1 ≥ c ∆αjt = ε
and 1− ujt−1 ≥ φ∆ujt−1

κ∆ujt−1 + (1− κ)∆ūt−1 ≤ −c ∆αjt = −ε

κ∆ujt−1 + (1− κ)∆ūt−1 > −c
and κ∆ujt−2 + (1− κ)∆ūt−2 ≤ −c ∆αjt = ε
and 1− ujt−1 ≥ φ∆ujt−1

κ∆ujt−1 + (1− κ)∆ūt−1 < c ∆αjt = −ε
and κ∆ujt−2 + (1− κ)∆ūt−2 ≥ c

Table 1 essentially comprises a menu of ‘if ... then’ statements that describes the conventional

bases for revising the SOLE. Its contents can be summarized as follows: the jth firm revises

its SOLE by comparing actual changes in capacity utilization to a conventional ‘normal’

rate of change, c, subject to a sustainability criterion.7 This sustainability criterion takes

the form of a heuristic that requires firms to check the feasibility of maintaining the recent

rate of increase in their capacity utilization rate, ∆ujt−1, over the coming φ periods against

7Note that in any period t, none of the conditions in the first column of table 1 need be satisfied for any
given firm j. In such cases, the SOLE remains constant and the firm will begin to converge to a steady state
rate of capacity utilization consistent with its now-constant SOLE. This is consistent with the ‘ordinary’
workings of the principle of effective demand in the presence of a constant SOLE.
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currently-available spare capacity, 1 − ujt−1. If this condition is not satisfied, firms are

discouraged and the SOLE is automatically revised downward (as in the third row of table

1).

If the sustainability criterion is satisfied, however, then firms next check ∆ũjt−1 =

κ∆ujt−1 + (1 − κ)∆ūt−1 against the benchmark value c. If ∆ũjt−1 ≥ c (∆ũjt−1 ≤ −c),

the SOLE is revised upward (downward) – as in rows four and five of table 1. Otherwise,

firms evaluate events in period t− 1 with reference to events one period earlier, establishing

whether or not events in period t − 1 were as good (bad) as they previously appeared to

be (in period t − 2). Specifically, if ∆ũjt−2 ≥ c whereas ∆ũjt−1 < c (∆ũjt−2 ≤ −c whereas

∆ũjt−1 > −c), firms conclude that ‘the best (worst) is now over’, and in response to this

determination, they revise their SOLE downward (upward). Behaviour of this type is the

substance of rows six and seven of table 1.

Note that recursive revision of the SOLE in the manner described above imbues our model

with the potential to create self-reinforcing booms and slumps in the SOLE of, and hence

the rate of accumulation undertaken by, any individual firm, punctuated by turning points

that transform booms into slumps (and vice versa). In other words, unlike the RBC model

of Acemoglu et al. (2012) (which is an impulse-response model, in which the significance

of network properties for simulated aggregate fluctuations is reflected in the rate of decay

of these fluctuations), ours is a model of (potential) cyclical growth. As will become clear

below, the model’s parameters can be (and are) set up to generate ongoing fluctuations in

the simulated pace of growth. In this context, the significance of network properties for

aggregate fluctuations will show up in the amplitude of simulated growth cycles.

Finally, because our interest is in aggregate fluctuations, and because our firms are ‘is-

lands’ except for the interaction among them in the process of revising the SOLE when κ 6= 1

in table 1, the basic model is completed by the addition of following simple aggregation pro-

cedure:
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Kt =
n∑
j=1

(1 + gajt)Kjt−1

We can then calculate the economy-wide rate of growth as:

gat =
Kt −Kt−1

Kt−1

Finally, since the values of v, sπ, and π are common to all firms, the aggregate rate of

capacity utilization follows as:

ut =
v

sππ
gat

4. The extended model

Our extension of the original model introduces three undirected and unweighted network

structures through which firms are connected to one another: a random graph; a graph

based on preferential attachment; and a small world. Even though the original model can

be thought of as an undirected random graph, interaction among firms in that model occurs

only indirectly through a ‘blackboard system’, in which individual firms’ behavior is influ-

enced by shared information about macroeconomic outcomes derived from the ‘blackboard’

(see, e.g., Wooldridge (2002, pp. 301-309)). The ambition in this paper is to model direct

interactions among firms in what is akin to a ‘beauty contest’ setting (Keynes, 1936, Chap-

ter 12), in which every agent is influenced by the average behaviour of a well-defined peer

group in which some peers are more salient than others.8 The type of system we have in

mind is a ‘complex adaptive system’ (Arthur, 2014, Chapter 1) wherein agents update their

internal model parameters in light of realized results. Specifically, agents form expectations

8See Davis (2017) for an analysis of the ‘beauty contest’ in terms of complex and reflexive dynamics.

13



not only in regard to economic ‘fundamentals’, that is their own previous rates of capacity

utilization ujt−1, but also by paying attention to other agents’ investment decisions, as cap-

tured by the average rate of capacity utilization among linked neighbouring firms, ūΘjt−1.

From this process, through individual and aggregate capital formation, an aggregate rate

of capacity utilization, ut, emerges, variations in which give rise to aggregate fluctuations

in the economy. Our interest is in the sensitivity of these fluctuations to properties of the

network structures that link individual firms and, in particular, the centrality of a firm’s

linked network neighbours, and the weight that a firm attaches to the centrality of its linked

network neighbours.

As previously noted, our concern with centrality arises from its association with a re-

cursive definition of the importance of a firm’s linked network neighbours that is akin to

Keynes’s famous ‘beauty contest’. The Bonacich family of centrality measures (Bonacich,

1987) is based on precisely this type of recursive definition, where the extent to which a node’s

centrality depends on the centrality of its neighbors can be varied based on the parameter

β. When β = 0, a node’s relative centrality depends solely on the number of its neighbors

and not on the neighbors’ centralities. When β reaches its upper limit, the reciprocal of

the largest eigenvalue of the adjacency matrix of the network,9 a node’s relative centrality is

equal to its eigenvector centrality. The eigenvector centrality of a node is thus indicative of

how important (or central) each node is in a manner that takes the entire network structure

into consideration to the extent possible.

Eigenvector centrality is therefore a key property of each node in network analysis, and

has been found to matter immensely in several different studies relevant to our own. In

the field of financial networks and systemic financial failures, for example, Yun et al. (2019)

find that PageRank centrality (a variant of eigenvector centrality applicable to directed net-

9If β is permitted to be larger than the reciprocal of the largest eigenvalue, the recursive definition of
centrality will result in an infinite sum.
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works) captures the prevalence of systemic risk better than other well-known systemic risk

measures. Markose et al. (2012) study the US credit default swaps market and find that a

‘superspreader’ tax based on eigenvector centrality can mitigate losses that might arise from

systemic fragility. In the field of information diffusion within a network, eigenvector central-

ization can function as a measure of structural bias in information aggregation (Bienenstock

and Bonacich, 2021). Using a dataset of social networks within villages in Indonesia, Alatas

et al. (2016) find that households with higher values of eigenvector centrality are significantly

better informed about the economic circumstances of other households in their village. In

the field of opinion dynamics, Buechel et al. (2015) find that agents with higher eigenvector

centrality have greater influence on long-run group opinions. Finally, Jia et al. (2015) study

a model where nodes share their opinions over a sequence of issues, and find that the extent

of social influence enjoyed by a node asymptotically approaches its value for eigenvector

centrality if each node’s self-appraisal is based on its relative control over prior issues.

4.1. Measuring and weighting centrality, and its role in firm deci-

sion making

In order to take account of centrality, we need to model the influence on firms’ investment

decisions of the firms to which they are linked. In so doing, we limit our attention to first-

order network links, and model firms as paying attention to the weighted average rate of

capacity utilization of their linked network neighbours, ūΘj , where Θj is the set of all first-

order degree linked network neighbours of firm j. Hence with ū ≡ ūΘj, the SOLE reaction

function of the jth firm, previously summarized in equation (10), now becomes:

∆αj = α(∆ujt−1 ,∆ūΘjt−1
) (14)

with ∆ūΘjt−1 replacing ∆ūjt−1 in the the criteria stated in table 1. When calculating ūΘjt−1
,
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we weight the capacity utilization of linked network neighbors by the weighted centrality

of these neighbours. In other words, in addition to using the centrality of a linked network

neighbour to weight the attention that firm j pays to this neighbour’s outcomes, we also allow

firm j to attach different weights to centrality when calculating ūΘj . The precise measure of

centrality used in this calculation is the eigenvector centrality, xj, defined as:

xj =
1

λ1

N∑
l=1

ajlxl , (15)

where, using j and l to denote two different nodes (firms) in the network, and with ajl each

element of the adjacency matrix A, λ1 denotes the largest eigenvalue of the adjacency ma-

trix A. As previously noted, we use this measure of centrality, as opposed to, for example,

the degree centrality,10 because even if a firm is connected to only a few other firms (thus

having a low degree centrality), its neighbors may be important, and therefore the node

is important too, giving it a high eigenvector centrality. Accordingly, a firm’s eigenvector

centrality can be large either because it has many linked neighbours or because it has im-

portant linked neighbours, or both. In addition, eigenvector centrality is particularly suited

to measuring centrality in undirected graphs, on which our analysis is based (see Newman

(2010, Chapter 7)).

Drawing on these considerations, our measure of the weighted average capacity utilization

of the first-degree linked network neighbors of firm j, ūΘj , can be stated as:

ūΘj =

∑
l∈Θj

ulx
ω
l∑

l∈Θj

xωl
, (16)

where the exponent ω denotes the weight attached to the centrality of linked network neigh-

bours by the jth firm. When ω = 0, ūΘj is the simple (unweighted) average of linked network

10The degree kj of firm j is calculated as kj =
∑

l∈Θj
ajl.

16



neighbours’ utilization rates. But as ω increases, the value of ūΘj increasingly reflects linked

neighbours’ eigencentralities. Hence when ω = 1, the weights xωl are exactly equal to the

eigenvector centralities of linked network neighbours, while for values of ω > 1, the weights

ascribe disproportionately more (less) importance to linked neighbors with higher (lower)

eigencentralities.

4.2. Network structures

Our interest in network structure and, in particular, the importance of the centrality of

linked network neighbours in generating aggregate fluctuations, demands that we specify the

type of network that is assumed to link individual firms. We consider three basic network

architectures: a random network; a preferentially attached network; and a small world. The

characteristics of these network structures are outlined in appendix A.

5. Simulation structure and analysis of results

5.1. Simulation details

For each type of network structure, we simulate the impact of xj and ω on aggregate fluc-

tuations (σ̂u) by setting κ = 0.5, so that firms attach equal weight to changes in their own

circumstances and changes in the weighted average rate of capacity utilization of linked

neighbours when revising their SOLE. We then vary ω ∈ [0, 4] in discrete increments of 0.1.

We perform 50 repetitions, thus generating 2,050 (50 repetitions × 41 values of ω) observa-

tions. A new network configuration is generated for each repetition of the model, and this

configuration then remains unchanged over the entire range of variation in ω. Finally, every

simulation involves 50 firms, and the initial shock to the individual rate of capacity, ∆uj0, is

set as a draw from ∆uj0 ∼ N(0, σu),∀j. Following Gouri Suresh and Setterfield (2015), we
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treat the convention c as an exogenous, fixed parameter derived from observed properties of

the aggregate rate of capacity utilization u:

c = βσu , (17)

where σu is computed as the annual average standard deviation of the seasonally adjusted

monthly value of total industry capacity utilization in the United States, 1967–2019 and

0 < β < 1. We then set the remaining parameter values of the model in accordance with

those found in Gouri Suresh and Setterfield (2015). The complete set of parameter values is

reported in table 2.

Table 2: Parameter values.

Parameter Value

gr 0.49

gu 0.025

π 0.33

v 3

sπ 0.8

u∗ 0.8242

gimax 0.088

ᾱ 0.0075

ε 0.00075

φ 2

σu 0.04075

β 0.09

κ 0.5
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5.2. The impact of centrality on aggregate fluctuations

We now turn to analyze the impact of the centrality of a firm’s linked network neighbours,

and the weight attached to this centrality, on aggregate fluctuations. Table 3 reports the

mean, standard deviation (S.D.), and coefficient of variation (C.V.) of the values of the degree

and eigenvector centrality for each of the three network structures we use, as computed over

all of the actual network configurations generated in the course of our simulations. As is

conventional, eigenvector centralities for each network are normalized such that the highest

value for eigenvector centrality in the network equals 1. As previously noted, eigenvector

centrality is our preferred measure of centrality: we report descriptive statistics for the degree

in table 3 to demonstrate the importance of this distinction, as reflected in the observable

differences between the means, S.D.s and C.V.s of these two measures of centrality.

Table 3: Average network metrics (standard deviations across simulations in parentheses).

k̄j x̄j

Mean S.D. C.V. Mean S.D. C.V.

Random network 24.501 3.448 0.141 0.766 0.106 0.139
(0.702) (0.342) (0.015) (0.034) (0.009) (0.014)

Preferential attachment 3.880 3.252 0.838 0.252 0.189 0.755
(0.000) (0.358) (0.092) (0.029) (0.017) (0.034)

Small world 4.000 0.607 0.152 0.500 0.200 0.418
(0.000) (0.105) (0.026) (0.082) (0.029) (0.119)

Looking at the descriptive statistics for x̄j in table 3, the important point to note is that

the value of the C.V. reported for the preferentially attached and small world networks is

several orders of magnitude larger than that for the random network. This is important

because it suggests that the two network structures that are more congruent with features
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of real-world social networks display much greater variation in centrality among nodes, as

compared to the ‘baseline’ random network – an observation that is consistent with there

being fewer more central nodes, that can act as aggregators and disseminators of information,

in these networks.11 As will become clear, this heterogeneity in the centrality of firms has

important implications for aggregate volatility in the economy.

Figure 1 then illustrates the effect on the mean amplitude of aggregate fluctuations

in capacity utilization (σ̂u) of varying the weight (ω) that individual firms attach to the

centrality of linked neighbours – and hence the weight they attach to the utilization outcomes

of more central linked neighbours – when calculating ūΘj and revising their SOLE. As can

be seen from figure 1, in all three network structures, the greater the value of ω, the lower

is the amplitude of the cycle. In other words, paying more attention to more central linked

network neighbours at the micro level has a stabilizing effect in the aggregate. The extent

of this stablizing effect does appear to differ between network structures, being less marked

in the random network than in either the preferentially attached or small world networks,

where we see much larger declines in the amplitude of the cycle as ω increases. Recall,

however, that preferentially attached and small world networks possess features that more

closely resemble real-world social networks.

[FIGURE 1 HERE]

The stabilizing effect of centrality and the weight attached to it across all three of the

network structures featured in figure 1 is borne out by table 4, which reports the results of

linear regressions of the form:

σ̂u = γ0 + γ1ω + γ2ω
2 + γ3CV (x̄j) + ξ (18)

where CV (x̄j) denotes the coefficient of variation of the eigenvector centrality of firm j’s

11The reader is again referred to the appendix A to this paper for discussion of the characteristics of the
three different types of networks on which our analysis rests.
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linked network neighbours and where, to capture the seemingly nonlinear relationship be-

tween σ̂u and ω in figure 1, we include both ω and ω2 as regressors. Our data set comprises

the 2,050 observations generated by our simulations, with averages of the independent vari-

ables in equation (18) calculated over each run. The results reported in table 4 show that

network structure has a statistically significant bearing on aggregate fluctuations consistent

with the stabilizing effect of centrality that is apparent in figure 1 and discussed above.

In all three networks, based on the coefficients for both ω and ω2, the weight attached to

eigenvector centrality exerts a negative and statistically significant impact on σ̂u,
12 as does

the coefficient of variation of eigenvector centrality CV (x̄j). This last result suggests that

ceteris paribus, greater heterogeneity in the centrality of firms within a network – i.e., a

greater mixture of firms that are either more or less central to opinion formation – produces

a less volatile macroeconomic environment. Together, these results are consistent with the

notion that a network featuring relatively few highly central firms, to whose outcomes other

firms attach considerable weight when revising their SOLE, will have a stabilizing effect on

the aggregate economy.

The substance of our regression results is illustrated in figure 2 which, based on the esti-

mated coefficients reported in table 4, illustrates the dampening effect on the amplitude of

aggregate fluctuations of increases in ω for three different values of CV (x̄j) – the maximum,

mean and minimum values derived from our simulations. As can be seen in figure 2, across

the range of variation in ω as a whole, increasing the weight attached to centrality reduces

the amplitude of fluctuations for any value of CV (x̄j) regardless of network structure and

(consistent with figure 1) to a greater extent in preferentially attached and small world net-

works than in random networks. Figure 2 also captures the inverse relationship between the

size of CV (x̄j) and the amplitude of aggregate fluctuations. It illustrates how raising (low-

ering) the value of CV (x̄j) above (below) its mean value reduces (increases) the amplitude

12This claim is borne out by figure 2 which is introduced and discussed below.
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of the cycle for any given value of ω.

[FIGURE 2 HERE]

Table 4: Regression results

RN PA SW

ω 0.001∗ −0.122∗∗∗ −0.050∗∗∗

(0.0005) (0.002) (0.002)

ω2 −0.001∗∗∗ 0.020∗∗∗ 0.002∗∗∗

(0.0001) (0.001) (0.001)

CV (x̄j) −0.053∗∗∗ −0.045∗∗ −0.081∗∗∗

(0.010) (0.021) (0.006)

Constant 0.344∗∗∗ 0.371∗∗∗ 0.377∗∗∗

(0.001) (0.016) (0.003)

Observations 2,050 2,050 2,050
Adjusted R2 0.210 0.750 0.708

Notes : ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

RN, PA and SW respectively refers to the random network, the preferentially attached and the small world
networks.

Returning now to figure 1, we observe a remarkable difference in the range of the am-

plitude of aggregate fluctuations (the shaded gray area in the left-hand panels of figure 1),

associated with an increase in the standard deviation of the amplitude of aggregate fluc-

tuations, as the weight attached to centrality increases. This is particularly evident in the

preferentially attached and small world networks, where increasing ω reduces the mean am-

plitude of the cycle but also markedly increases the standard deviation around this mean.

The values of the skewness of σ̂u (reported in the right-hand panels of figure 1) suggest that
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the distributions of σ̂u about its mean values are approximately symmetric in both prefer-

entially attached and small world networks and for all values of ω. This means that random

draws from these distributions are about as likely as not to produce substantial increases in

the amplitude of aggregate fluctuations – which observation is suggestive of environments in

which, for suitably high values of ω, ‘great moderations’ (associated with low mean values of

σ̂u) can suddenly give way to periods of markedly increased macroeconomic volatility. Indeed

judging by the results illustrated in the left-hand panels of figure 1, this transition can occur

either by virtue of a decline in the weight attached to centrality, or simply because of the

materialization of the ‘downside risk’ (associated with the high variance of σ̂u) inherent in

higher values of ω. The second of these two channels implies that we do not need to observe

a change in firms’ information aggregation processes (associated with a reduction in ω) for

volatility to arise from a period of tranquility: for sufficiently high values of ω, the economy

is innately vulnerable to the onset of such increased volatility.

6. Conclusions

Motivated by previous studies of the granular and network origins of aggregate fluctuations,

and the comparative neglect of the demand side in this literature, this paper explores the

network origins of aggregate fluctuations in a demand-led model of cyclical growth. In our

model, aggregate fluctuations are caused by variations in investment spending that are, in

turn, driven by changes in firms’ ‘animal spirits’ or state of long run expectations (SOLE).

The latter are revised with reference to both firms’ own past performance and that of linked

network neighbours. When reckoning the performance of their neighbours, firms attach more

weight to outcomes associated with more central linked network neighbours, and also vary

the weight they attach to centrality itself.

Using eigenvector centrality as our preferred measure of the centrality of any given firm,
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our results suggest that in general, centrality has a stabilizing effect on the aggregate econ-

omy. More specifically, we find that when, in the process of revising their SOLE, firms attach

more weight to centrality – and hence more weight to the utilization outcomes of more cen-

tral linked network neighbours – macroeconomic volatility declines. This is especially so

when centrality is heterogeneous: the amplitude of aggregate fluctuations falls as the coef-

ficient of variation of eigenvector centrality rises, ceteris paribus. In other words, networks

in which there are fewer more central firms acting as aggregators and disseminators of infor-

mation have a stabilizing effect on the aggregate economy, regardless of the weight attached

by firms to centrality itself in the process of revising their SOLE. These effects of network

structure on volatility are observed consistently across qualitatively different network struc-

tures, and are particularly evident in preferentially attached and small world networks that

better approximate features of real-world social networks.

Our results are consistent with a growing literature that emphasizes the importance of

centrality in the determination of outcomes influenced by social interaction that is structured

by network connections (see, for example, Markose et al., 2012; Buechel et al., 2015; Jia et al.,

2015; Alatas et al., 2016; Yun et al., 2019). Furthermore, and in keeping with earlier work

(see, for example, Dosi et al., 2010; Setterfield and Budd, 2011; Gouri Suresh and Setterfield,

2015; Gibson and Setterfield, 2018; Dosi et al., 2019), our analysis is also suggestive of

ways in which typically aggregative demand-led models of growth and fluctuations can be

imbued with micro-foundational features that advance our understanding of the dynamics

of a demand-led economy.
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Appendix A Network structures

A.1 Random network

The random network we adopt is the G(n, p) variant of the Erdős–Rényi model (Erdős and

Rényi, 1959). G(n, p) is the ensemble of networks with n vertices and m edges in which each

graph G appears with probability:

P (G) = pm(1− p)(
n
2)−m .

We set p = 0.5 – the case where all 2(n2) graphs on n vertices are chosen with equal probability

– and n = 50. For small values of n, the degree distribution of a random network is

binomial:13

P (k) =

(
n− 1

k

)
pk(1− p)n−1−k ,

where p denotes the independent probability that a given k vertex in the graph is connected

to n− 1 other vertices.

0 10 20 30 40

k

P
(k

)

0.00

0.02

0.04

0.06

0.08

0.10

Simulated

B(49, 0.5)

Figure 3: Degree distribution of the random network.

13Note that the behavior of random graphs is usually studied for n → ∞. In this case, the degree
distribution follows a Poisson distribution. However, for computational reasons, we choose n = 50.
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As we can see in figure 3, the degree distribution of the simulated random network, repre-

sented by the red asterisks, is properly approximated by a binomial distribution B(49, 0.5),

denoted by the dashed blue line.

Unfortunately, random networks have severe shortcomings with respect to social networks

observed in reality. Firstly, they exhibit almost null clustering coefficients, as opposed to

real-world networks where clustering coefficients are typically quite high. Secondly, random

networks show no correlation between the degrees of adjacent vertices (given that the edges

are randomly generated), whereas in reality such correlation can be observed. Finally, real-

world networks have right-skewed degree distributions, meaning that most vertices have low

degree while a minority are high-degree ‘hubs’. As it is clear from figure 3, random graphs

(independently of the precise form of their degree distributions) do not exhibit this property.

In light of the above observations, we use the random network as a benchmark against

which to judge the importance of two additional network structures that exhibit more real-

istic features.

A.2 Preferential attachment

The preferential attachment network we generate is a scale-free network based on the Barabási–Albert

(BA) model (Barabási and Albert, 1999). The BA model works as follows.

The algorithm begins with an initial connected network of m0 nodes and new nodes are

added one at a time. Each new node j is connected to m ≤ m0 existing nodes with the

following probability pj:

pj =
kj
n∑
l=1

kl

.

As a result, new nodes ‘prefer’ to attach to nodes that are already highly linked. The

accumulation of links by the latter is thus self-reinforcing, which results in them becoming
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high degree hubs. The degree distribution of the BA model follows a power law:

P (k) ∼ k−3, k →∞ .

Figure 4 shows the degree distribution of the preferentially attached network we generated

(red asterisks) along with the degree distribution of the BA model (dashed blue line) on a

log-log scale. The difference between the two distributions is due to the magnitude of k,

which in our model has an average value of 〈k〉 = 3.88. If we consider the degree distribution

P (k) ∼ k−2, however, which is represented by the dashed black line in figure 4, we can

see that it better approximates the simulated network structure. In fact, the exponents of

real-world networks usually lie within the interval (2, 3).14

k
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(k

)

1 2 5 10 15 20 25

10−5

10−4

10−3

10−2

10−1

Simulated

k −2

k −3

Figure 4: Degree distribution of the preferential attachment (log-log scale).

A.3 Small world

The final network structure we consider is known as a small world (Watts and Strogatz,

1998). Small worlds combine two properties of real-world networks – high clustering and

short path length – by interpolating between a regular ring lattice and a random graph. The

14Note that, to detect a scale-free network, its degree distribution needs to span through at least 2-3 orders
of magnitude, meaning that kmax ∼ 103. Preferential attachment alone does not guarantee that the degree
distribution will be scale free.
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algorithm of the model works as follows.

The network is constructed with a ring lattice with n nodes in which every node is

connected to an average of 〈k〉 neighbours, 〈k〉/2 on each side. Each edge of the lattice

is randomly rewired with probability p, such that self-connections and duplicate edges are

excluded. By varying p, the network can be transformed from a completely ordered (p = 0)

to a completely random (p = 1) structure.15 Note that N and 〈k〉 are chosen so that

N � 〈k〉 � lnN � 1 and thus the graph remains connected (〈k〉 � ln(N)).

The degree distribution of the small world model, in the case of the ring lattice, is

represented by the following probability distribution:

P (k) =

f(k,〈k〉)∑
n=0

(
〈k〉/2
n

)
(1− p)np〈k〉/2−n (p〈k〉/2)k−〈k〉/2−n

(k − 〈k〉/2− n)!
e−p〈k〉/2 ,

where k ≥ 〈k〉/2 and f(k, 〈k〉) = min(k − 〈k〉/2, 〈k〉/2). As figure 5 shows, the shape of

the degree distribution is similar to that of a random graph and has a pronounced peak at

k = 〈k〉 = 4, which decays exponentially for large |k − 〈k〉|. Hence a shortcoming of this

model is that it generates a degree distribution that is not typical of real-world networks. It

does, however, give rise to a high clustering coefficient – unlike the BA model which, on the

contrary, fails to produce realistically high clustering.

15In our simulation, we set n = 50, p = 0.1 (which allows for the small world property).
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Figure 5: Degree distribution of the small world.
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Figure 1: Aggregate fluctuations and the impact of weight.
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(b) Preferential attachment
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(c) Small world

In the left panel, the shaded gray area represents the range of σ̂u.
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Figure 2: The joint effects of ω and CV (x̄j) on aggregate volatility.
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(c) Small world
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